Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.543
Filtrar
Más filtros

Intervalo de año de publicación
1.
Chem Soc Rev ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953906

RESUMEN

High-quality transparent electrodes are indispensable components of flexible optoelectronic devices as they guarantee sufficient light transparency and electrical conductivity. Compared to commercial indium tin oxide, metal nanowires are considered ideal candidates as flexible transparent electrodes (FTEs) owing to their superior optoelectronic properties, excellent mechanical flexibility, solution treatability, and higher compatibility with semiconductors. However, certain key challenges associated with material preparation and device fabrication remain for the practical application of metal nanowire-based electrodes. In this review, we discuss state-of-the-art solution-processed metal nanowire-based FTEs and their applications in flexible and stretchable optoelectronic devices. Specifically, the important properties of FTEs and a cost-benefit analysis of existing technologies are introduced, followed by a summary of the synthesis strategy, key properties, and fabrication technologies of the nanowires. Subsequently, we explore the applications of metal-nanowire-based FTEs in different optoelectronic devices including solar cells, photodetectors, and light-emitting diodes. Finally, the current status, future challenges, and emerging strategies in this field are presented.

2.
Blood ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958479

RESUMEN

This study aimed to compare the efficacy and safety of eltrombopag plus diacerein vs. eltrombopag alone in patients with primary immune thrombocytopenia (ITP) who were previously unresponsive to 14 days of eltrombopag treatment at the full dose. Recruited patients were randomly assigned 1:1 to receive either eltrombopag plus diacerein (n=50) or eltrombopag monotherapy (n=52). Overall response rate, defined as a platelet count at or above 30×109/L, at least doubling of the baseline platelet count, and no bleeding, was reached in 44% of patients in the eltrombopag plus diacerein group compared with 13% in the eltrombopag group at day 15 (P = .0009), and reached in 42% of patients in the combination group compared with 12% in the monotherapy group at day 28 (P = .0006). The addition of diacerein to eltrombopag also led to a longer duration of response (P = .0004). The two most common treatment-emergent adverse events were respiratory infection and gastrointestinal reactions in the combination group, and fatigue and respiratory infection in the eltrombopag group. In conclusion, eltrombopag plus diacerein was well tolerated, and induced higher overall response rates and longer duration of response than eltrombopag alone, offering a rejuvenating salvage therapy for ITP patients unresponsive to 14 days of full dosage eltrombopag. Our work has the potential to enhance the care of patients treated with thrombopoietin receptor agonists, reducing the need for rapid transitions to less-preferable therapies. This study is registered at ClinicalTrials.gov as NCT04917679.

3.
J Adv Res ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838783

RESUMEN

BACKGROUND: The whole life of a plant is regulated by complex environmental or hormonal signaling networks that control genomic stability, environmental signal transduction, and gene expression affecting plant development and viability. Seed germination, responsible for the transformation from seed to seedling, is a key initiation step in plant growth and is controlled by unique physiological and biochemical processes. It is continuously modulated by various factors including epigenetic modifications, hormone transport, ROS signaling, and interaction among them. ROS showed versatile crucial functions in seed germination including various physiological oxidations to nucleic acid, protein, lipid, or chromatin in the cytoplasm, cell wall, and nucleus. AIM: of review: This review intends to provide novel insights into underlying mechanisms of seed germination especially associated with the ROS, and considers how these versatile regulatory mechanisms can be developed as useful tools for crop improvement. KEY SCIENTIFIC CONCEPTS OF REVIEW: We have summarized the generation and elimination of ROS during seed germination, with a specific focus on uncovering and understanding the mechanisms of seed germination at the level of phytohormones, ROS, and epigenetic switches, as well as the close connections between them. The findings exhibit that ROS plays multiple roles in regulating the ethylene, ABA, and GA homeostasis as well as the Ca2+ signaling, NO signaling, and MAPK cascade in seed germination via either the signal trigger or the oxidative modifier agent. Further, ROS shows the potential in the nuclear genome remodeling and some epigenetic modifiers function, although the detailed mechanisms are unclear in seed germination. We propose that ROS functions as a hub in the complex network regulating seed germination.

4.
Opt Express ; 32(10): 17657-17666, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858943

RESUMEN

Tin diselenide (SnSe2), a layered transition metal dichalcogenide (TMDC), stands out among other TMDCs for its extraordinary photoactive ability and low thermal conductivity. Consequently, it has stimulated many influential researches on photodetectors, ultrafast pulse shaping, thermoelectric devices, etc. However, the carrier mobility in SnSe2, as determined experimentally, remains limited to tens of cm2V-1s-1. This limitation poses a challenge for achieving high-performance SnSe2-based devices. Theoretical calculations, on the other hand, predict that the carrier mobility in SnSe2 can reach hundreds of cm2V-1s-1, approximately one order of magnitude higher than experimental value. Interestingly, the carrier mobility could be underestimated significantly in long-range transportation measurements due to the presence of defects and boundary scattering effects. To address this discrepancy, we employ optic pump terahertz probe spectroscopy to access the photoinduced dynamical THz photoconductivity of SnSe2. Our findings reveal that the intrinsic carrier mobility in conventional SnSe2 single crystal is remarkably high, reaching 353.2 ± 37.7 cm2V-1s-1, consistent with the theoretical prediction. Additionally, dynamical THz photoconductivity measurements reveal that the SnSe2 crystal containing rich defects efficiently capture photoinduced conduction-band electrons and valence-band holes with time constants of ∼20 and ∼200 ps, respectively. Meanwhile, we observe an impulsively stimulated Raman scattering at 0.60 THz. Our study not only demonstrates ultrafast THz spectroscopy as a reliable method for determining intrinsic carrier mobility and detection of low frequency coherent Raman mode in materials but also provides valuable reference for the future application of high-performance SnSe2-based devices.

5.
Biochemistry (Mosc) ; 89(5): 973-986, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38880656

RESUMEN

Ischemia/reperfusion (I/R) injury is one of the major causes of cardiovascular disease. Gypenoside A (GP), the main active component of Gynostemma pentaphyllum, alleviates myocardial I/R injury. Circular RNAs (circRNAs) and microRNAs (miRNAs) are involved in the I/R injury. We explored the protective effect of GP on human cardiomyocytes (HCMs) via the circ_0010729/miR-370-3p/RUNX1 axis. Overexpression of circ_0010729 abolished the effects of GP on HMC, such as suppression of apoptosis and increase in cell viability and proliferation. Overexpression of miR-370-3p reversed the effect of circ_0010729 overexpression, resulting in the stimulation of HMC viability and proliferation and inhibition of apoptosis. The knockdown of miR-370-3p suppressed the effects of GP in HCMs. RUNX1 silencing counteracted the effect of miR-370-3p knockdown and maintained GP-induced suppression of apoptosis and stimulation of HMC viability and proliferation. The levels of RUNX1 mRNA and protein were reduced in cells expressing miR-370-3p. In conclusion, this study confirmed that GP alleviated the I/R injury of myocardial cell via the circ_0010729/miR-370-3p/RUNX1 axis.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Gynostemma , MicroARNs , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , ARN Circular , Humanos , MicroARNs/metabolismo , MicroARNs/genética , ARN Circular/genética , ARN Circular/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales
6.
Curr Gene Ther ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38920074

RESUMEN

INTRODUCTION: The Ribonucleoside-diphosphate Reductase subunit M2 (RRM2) is known to be overexpressed in various cancers, though its specific functional implications remain unclear. This aims to elucidate the role of RRM2 in the progression of Lung Adenocarcinoma (LUAD) by exploring its involvement and potential impact. METHODS: RRM2 data were sourced from multiple databases to assess its diagnostic and prognostic significance in LUAD. We evaluated the association between RRM2 expression and immune cell infiltration, analyzed its function, and explored the effects of modulating RRM2 expression on LUAD cell characteristics through laboratory experiments. RESULTS: RRM2 was significantly upregulated in LUAD tissues and cells compared to normal counterparts (p<0.05), with rare genetic alterations noted (approximately 2%). This overexpression clearly distinguished LUAD from normal tissue (area under the curve (AUC): 0.963, 95% confidence intervals (CI): 0.946-0.981). Elevated RRM2 expression was significantly associated with adverse clinicopathological characteristics and poor prognosis in LUAD patients. Furthermore, a positive association was observed between RRM2 expression and immune cell infiltration. Pathway analysis revealed a critical connection between RRM2 and the cell cycle signaling pathway within LUAD. Targeting RRM2 inhibition effectively suppressed LUAD cell proliferation, migration, and invasion while promoting apoptosis. This intervention also modified the expression of several crucial proteins, including the downregulation of CDC25A, CDC25C, RAD1, Bcl-2, and PPM1D and the upregulation of TP53 and Bax (p < 0.05). CONCLUSION: Our findings highlight the potential utility of RRM2 expression as a biomarker for diagnosing and predicting prognosis in LUAD, shedding new light on the role of RRM2 in this malignancy.

7.
Am J Physiol Cell Physiol ; 327(1): C65-C73, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38766766

RESUMEN

The blood-brain barrier (BBB) plays a critical role in the development and outcome of subarachnoid hemorrhage (SAH). This study focuses on the potential mechanism by which G-protein-coupled estrogen receptor 30 (GPR30) affects the BBB after SAH. A rat SAH model was established using an intravascular perforation approach. G1 (GPR30 agonist) was administered to investigate the mechanism of BBB damage after SAH. Brain water content, Western blotting, Evans blue leakage, and immunofluorescence staining were performed. Brain microvascular endothelial cells were induced by hemin to establish SAH model in vitro. By adding LY294002 [a phosphatidylinositol 3-kinase (PI3K) blocker] and zinc protoporphyrin IX (ZnPP IX) [a heme oxygenase 1 (HO-1) antagonist], the mechanism of improving BBB integrity through the activation of GPR30 was studied. In vivo, GPR30 activation improved BBB disruption, as evidenced by decreased cerebral edema, downregulated albumin expression, and reduced extravasation of Evans blue and IgG after G1 administration in SAH rats. Moreover, SAH downregulated the levels of tight junction (TJ) proteins, whereas treatment with G1 reversed the effect of SAH. The protective effect of G1 on BBB integrity in vitro was consistent with that in vivo, as evidenced by G1 reducing the impact of hemin on transendothelial electrical resistance (TEER) value, dextran diffusivity, and TJ protein levels in brain microvascular endothelial cells. In addition, G1 activated the PI3K/ protein kinase B (Akt) and nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 pathways both in vivo and in vitro. Furthermore, the administration of LY294002 and ZnPP IX partially reversed the protective effect of G1 on BBB integrity in hemin-stimulated cells. We demonstrated that the activation of GPR30, at least partly through the PI3K/Akt and Nrf2/HO-1 pathways, alleviated BBB damage both in vivo and in vitro. This study introduced a novel therapeutic approach for protecting the BBB after SAH.NEW & NOTEWORTHY The PI3K/Akt and Nrf2/HO-1 pathways might be potential mechanisms by which GPR30 protected the integrity of the BBB in SAH models. Therefore, treatment of SAH with GPR30 activator might be a promising therapeutic strategy.


Asunto(s)
Barrera Hematoencefálica , Factor 2 Relacionado con NF-E2 , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G , Transducción de Señal , Hemorragia Subaracnoidea , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/complicaciones , Masculino , Ratas , Fosfatidilinositol 3-Quinasas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Modelos Animales de Enfermedad , Fosfatidilinositol 3-Quinasa/metabolismo , Hemina/farmacología
8.
Artículo en Inglés | MEDLINE | ID: mdl-38814831

RESUMEN

AIMS: Down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) contributes to doxorubicin (DOX)-induced myocardial oxidative stress, and inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) increased Nrf2 protein level in rat heart suffered ischemia/reperfusion, indicating a connection between MALT1 and Nrf2. This study aims to explore the role of MALT1 in DOX-induced myocardial oxidative stress and the underlying mechanisms. RESULTS: The mice received a single injection of DOX (15 mg/kg, i.p.) to induce myocardial oxidative stress, evidenced by increases in the levels of reactive oxidative species while decreases in the activities of anti-oxidative enzymes, concomitant with a down-regulation of Nrf2; these phenomena were reversed by MALT1 inhibitor. Similar phenomena were observed in DOX-induced oxidative stress in cardiomyocytes. Mechanistically, knockdown or inhibition of MALT1 notably attenuated the interaction between Nrf2 and MALT1, and decreased the k48-linked ubiquitination of Nrf2. Furthermore, inhibition or knockdown of calcium/calmodulin-dependent protein kinase II (CaMKII-δ) reduced the phosphorylation of caspase recruitment domain-containing protein 11 (CARD11), and subsequently disrupted the assembly of CARD11, B-cell lymphoma 10 (BCL10) and MALT1 (CBM) complex, and reduced the MALT1-dependent k48-linked ubiquitination of Nrf2 in DOX-treated mice or cardiomyocytes. INNOVATION AND CONCLUSION: The E3 ubiquitin ligase function of MALT1 accounts for the down-regulation of Nrf2 and aggravation of myocardial oxidative stress in DOX-treated mice, and CaMKII-δ-dependent phosphorylation of CARD11 triggered the assembly of CBM complex and subsequent activation of MALT1.

9.
Org Lett ; 26(22): 4616-4620, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38805677

RESUMEN

A series of structurally chiral cyclic imines efficiently yields chiral nitrones and nitroalkanes. This is the first report of the synthesis of nitro groups by C═N bond cleavage of imines through a nitrone intermediate.

10.
Cardiovasc Diabetol ; 23(1): 150, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702777

RESUMEN

BACKGROUND: Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS: Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS: Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION: In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Células Endoteliales de la Vena Umbilical Humana , Canales Iónicos , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III , Estrés Oxidativo , Animales , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Diabetes Mellitus Experimental/metabolismo , Canales Iónicos/metabolismo , Canales Iónicos/genética , Glucemia/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Mecanotransducción Celular , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/deficiencia , Células Cultivadas , Proliferación Celular , Apoptosis , Masculino , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/etiología , Movimiento Celular , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Ratones , Estreptozocina , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Endotelio Vascular/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética
11.
World J Pediatr ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713366

RESUMEN

BACKGROUND: SARS-CoV-2 continues to mutate over time, and reports on children infected with Omicron BA.5 are limited. We aimed to analyze the specific symptoms of Omicron-infected children and to improve patient care. METHODS: We selected 315 consecutively hospitalized children with Omicron BA.5 and 16,744 non-Omicron-infected febrile children visiting the fever clinic at our hospital between December 8 and 30, 2022. Specific convulsions and body temperatures were compared between the two cohorts. We analyzed potential associations between convulsions and vaccination, and additionally evaluated the brain damage among severe Omicron-infected children. RESULTS: Convulsion rates (97.5% vs. 4.3%, P < 0.001) and frequencies (median: 2.0 vs. 1.6, P < 0.001) significantly differed between Omicron-infected and non-Omicron-infected febrile children. The body temperatures of Omicron-infected children were significantly higher during convulsions than when they were not convulsing and those of non-Omicron-infected febrile children during convulsions (median: 39.5 vs. 38.2 and 38.6 °C, both P < 0.001). In the three Omicron-subgroups, the temperature during convulsions was proportional to the percentage of patients and significantly differed ( P < 0.001), while not in the three non-Omicron-subgroups ( P = 0.244). The convulsion frequency was lower in the 55 vaccinated children compared to the 260 non-vaccinated children (average: 1.8 vs. 2.1, P < 0.001). The vaccination dose and convulsion frequency in Omicron-infected children were significantly correlated ( P < 0.001). Fifteen of the 112 severe Omicron cases had brain damage. CONCLUSIONS: Omicron-infected children experience higher body temperatures and frequencies during convulsions than those of non-Omicron-infected febrile children. We additionally found evidence of brain damage caused by infection with omicron BA.5. Vaccination and prompt fever reduction may relieve symptoms.

12.
J Fluoresc ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717650

RESUMEN

Due to the unique chemical and biomedical properties of carbon dots (CDs), they have increasingly obtained the attention in many research fields, for example, bioimaging, fluorescence sensing, and drug delivery, etc. Recently, it was found that, under light excitation, CDs can also be exploited as a novel photosensitizer to prepare reactive oxygen species (ROS), which expand their applications in the field of photodynamic therapy for cancer treatment. Nevertheless, the high cost and complex fabrication approach of CDs significantly limit their applications. To address this issue, bottom-up routes usually utilize sustainable and inexpensive carbon precursor as starting materials, employed N,N-dimethylformamide (DMF) or ethanol as an environmental-friendly solvent. Bottom-up approach was energy efficient, and the purification process was relatively simple by dialysis. Therefore, carbon dots (CDs) were facilely fabricated in a one-pot solvothermal process using 1-aminoanthraquinone as a precursor, and their application as photosensitizers for in vitro antitumor cells, especially photodynamic therapy (PDT) was established. Then the photophysical and nanoscale dimensions properties of the fabricated CDs were characterized via TEM, UV-visible, fluorescence, and FT-IR spectroscopy. The synthesized N-doped CDs can easily dissolve in water, possess very low biotoxicity, yellow-light emission (maximum peak at 587 nm). More importantly, PDT studies demonstrated that the obtained CDs possess a high singlet oxygen yield of 35%, and exhibit significant phototoxicity to cancer cells upon 635 nm laser irradiation. These studies highlight that N-doped CDs can be facilely synthesized from only one precursor, and are a potentially novel theranostic agent for in vivo PDT.

13.
BMC Plant Biol ; 24(1): 392, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735932

RESUMEN

BACKGROUND: Long-chain acyl-coenzyme A synthetase (LACS) is a type of acylating enzyme with AMP-binding, playing an important role in the growth, development, and stress response processes of plants. RESULTS: The research team identified different numbers of LACS in four cotton species (Gossypium hirsutum, Gossypium barbadense, Gossypium raimondii, and Gossypium arboreum). By analyzing the structure and evolutionary characteristics of the LACS, the GhLACS were divided into six subgroups, and a chromosome distribution map of the family members was drawn, providing a basis for further research classification and positioning. Promoter cis-acting element analysis showed that most GhLACS contain plant hormones (GA, MeJA) or non-biological stress-related cis-elements. The expression patterns of GhLACS under salt stress treatment were analyzed, and the results showed that GhLACS may significantly participate in salt stress response through different mechanisms. The research team selected 12 GhLACSs responsive to salt stress for tissue expression analysis and found that these genes are expressed in different tissues. CONCLUSIONS: There is a certain diversity of LACS among different cotton species. Analysis of promoter cis-acting elements suggests that GhLACS may be involved in regulating plant growth, development and stress response processes. GhLACS25 was selected for in-depth study, which confirmed its significant role in salt stress response through virus-induced gene silencing (VIGS) and induced expression in yeast cells.


Asunto(s)
Gossypium , Proteínas de Plantas , Estrés Salino , Gossypium/genética , Gossypium/fisiología , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Familia de Multigenes , Filogenia , Regiones Promotoras Genéticas/genética , Genoma de Planta , Genes de Plantas
14.
Nanomaterials (Basel) ; 14(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38727393

RESUMEN

Terahertz (THz) sensors have attracted great attention in the biological field due to their nondestructive and contact-free biochemical samples. Recently, the concept of a quasi-bound state in the continuum (QBIC) has gained significant attention in designing biosensors with ultrahigh sensitivity. QBIC-based metasurfaces (MSs) achieve excellent performance in various applications, including sensing, optical switching, and laser, providing a reliable platform for biomaterial sensors with terahertz radiation. In this study, a structure-engineered THz MS consisting of a "double C" array has been designed, in which an asymmetry parameter α is introduced into the structure by changing the length of one subunit; the Q-factor of the QBIC device can be optimized by engineering the asymmetry parameter α. Theoretical calculation with coupling equations can well reproduce the THz transmission spectra of the designed THz QBIC MS obtained from the numerical simulation. Experimentally, we adopt an MS with α = 0.44 for testing arginine molecules. The experimental results show that different concentrations of arginine molecules lead to significant transmission changes near QBIC resonant frequencies, and the amplitude change is shown to be 16 times higher than that of the classical dipole resonance. The direct limit of detection for arginine molecules on the QBIC MS reaches 0.36 ng/mL. This work provides a new way to realize rapid, accurate, and nondestructive sensing of trace molecules and has potential application in biomaterial detection.

15.
iScience ; 27(6): 109865, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770132

RESUMEN

Previous studies have indicated the neuroprotective effect of olfactory mucosa mesenchymal stem cells (OM-MSCs) on brain injury. Intracerebral hemorrhage (ICH) models were established in rats by injecting autologous blood. SENP1 expression was enhanced in neurons but decreased in astrocytes compared to that in OM-MSCs. Overexpression of SENP1 promoted the proliferation and neuronal differentiation, while inhibiting the astrocytic differentiation of OM-MSCs. Conversely, its knockdown had the opposite effect. Moreover, OM-MSCs reduced neurological dysfunction in rats after ICH, and the neuroprotective effect of OM-MSCs could be further enhanced by SENP1 overexpression. In addition, SENP1 promoted mitophagy, which might be related to SENP1-mediated OPTN deSUMOylation. Furthermore, SENP1 promoted neuronal differentiation of OM-MSCs through mitophagy mediated by OPTN. Similar to SENP1, OPTN transfection further enhanced the remission effect of OM-MSC on ICH rats. SENP1 promoted neuronal differentiation of OM-MSCs through OPTN-mediated mitophagy to improve neurological deficits in ICH rats.

16.
J Cell Mol Med ; 28(9): e18321, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712979

RESUMEN

As a main extraction compound from Scutellaria baicalensis Georgi, Baicalin exhibits various biological activities. However, the underlying mechanism of Baicalin on hypertension-induced heart injury remains unclear. In vivo, mice were infused with angiotensin II (Ang II; 500 ng/kg/min) or saline using osmotic pumps, followed by intragastrically administrated with Baicalin (5 mg/kg/day) for 4 weeks. In vitro, H9C2 cells were stimulated with Ang II (1 µM) and treated with Baicalin (12.5, 25 and 50 µM). Baicalin treatment significantly attenuated the decrease in left ventricular ejection fraction and left ventricular fractional shortening, increase in left ventricular mass, left ventricular systolic volume and left ventricular diastolic volume of Ang II infused mice. Moreover, Baicalin treatment reversed 314 differentially expressed transcripts in the cardiac tissues of Ang II infused mice, and enriched multiple enriched signalling pathways (including apoptosis, autophagy, AMPK/mTOR signalling pathway). Consistently, Baicalin treatment significantly alleviated Ang II-induced cell apoptosis in vivo and in vitro. Baicalin treatment reversed the up-regulation of Bax, cleaved-caspase 3, cleaved-caspase 9, and the down-regulation of Bcl-2. Meanwhile, Baicalin treatment alleviated Ang II-induced increase of autophagosomes, restored autophagic flux, and down-regulated LC3II, Beclin 1, as well as up-regulated SQSTM1/p62 expression. Furthermore, autophagy inhibitor 3-methyladenine treatment alleviated the increase of autophagosomes and the up-regulation of Beclin 1, LC3II, Bax, cleaved-caspase 3, cleaved-caspase 9, down-regulation of SQSTM1/p62 and Bcl-2 expression after Ang II treated, which similar to co-treatment with Baicalin. Baicalin treatment reduced the ratio of p-AMPK/AMPK, while increased the ratio of p-mTOR/mTOR. Baicalin alleviated Ang II-induced cardiomyocyte apoptosis and autophagy, which might be related to the inhibition of the AMPK/mTOR pathway.


Asunto(s)
Angiotensina II , Apoptosis , Autofagia , Flavonoides , Miocitos Cardíacos , Transducción de Señal , Animales , Masculino , Ratones , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Angiotensina II/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular , Flavonoides/farmacología , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
17.
Blood ; 144(1): 99-112, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38574321

RESUMEN

ABSTRACT: Platelet α-granules are rich in transforming growth factor ß1 (TGF-ß1), which is associated with myeloid-derived suppressor cell (MDSC) biology. Responders to thrombopoietin receptor agonists (TPO-RAs) revealed a parallel increase in the number of both platelets and MDSCs. Here, anti-CD61 immune-sensitized splenocytes were transferred into severe combined immunodeficient mice to establish an active murine model of immune thrombocytopenia (ITP). Subsequently, we demonstrated that TPO-RAs augmented the inhibitory activities of MDSCs by arresting plasma cells differentiation, reducing Fas ligand expression on cytotoxic T cells, and rebalancing T-cell subsets. Mechanistically, transcriptome analysis confirmed the participation of TGF-ß/Smad pathways in TPO-RA-corrected MDSCs, which was offset by Smad2/3 knockdown. In platelet TGF-ß1-deficient mice, TPO-RA-induced amplification and enhanced suppressive capacity of MDSCs was waived. Furthermore, our retrospective data revealed that patients with ITP achieving complete platelet response showed superior long-term outcomes compared with those who only reach partial response. In conclusion, we demonstrate that platelet TGF-ß1 induces the expansion and functional reprogramming of MDSCs via the TGF-ß/Smad pathway. These data indicate that platelet recovery not only serves as an end point of treatment response but also paves the way for immune homeostasis in immune-mediated thrombocytopenia.


Asunto(s)
Plaquetas , Células Supresoras de Origen Mieloide , Púrpura Trombocitopénica Idiopática , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Plaquetas/metabolismo , Plaquetas/inmunología , Ratones , Púrpura Trombocitopénica Idiopática/inmunología , Púrpura Trombocitopénica Idiopática/patología , Púrpura Trombocitopénica Idiopática/metabolismo , Humanos , Femenino , Masculino , Ratones SCID , Transducción de Señal , Reprogramación Celular , Adulto
18.
J Econ Entomol ; 117(3): 817-824, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38603566

RESUMEN

Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a destructive insect pest of many crops. Rickettsia infection in different cryptic species of B. tabaci has been observed worldwide. Understanding the interactions between these 2 organisms is critical to developing Rickettsia-based strategies to control B. tabaci and thereby reduce the transmission of related vector-borne viruses. In this study, we investigated the effects of Rickettsia infection on the biological characteristics of the Middle East Asia Minor 1 (MEAM1) strain of B. tabaci through biological analysis of infected and uninfected individuals. The results of this study suggest that Rickettsia may confer fitness benefits. These benefits include increased fertility, improved survival rates, accelerated development, and resulted in female bias. We also investigated the transcriptomics impact of Rickettsia infection on B. tabaci by performing a comparative RNA-seq analysis of nymphs and adult females, both with and without the infection. Our analysis revealed 218 significant differentially expressed genes (DEGs) in infected nymphs compared to uninfected ones and 748 significant DEGs in infected female adults compared to their uninfected whiteflies. Pathway analysis further revealed that Rickettsia can affect many important metabolic pathways in whiteflies. The results suggest that Rickettsia plays an essential role in energy metabolism, and nutrient synthesis in the B. tabaci MEAM1, and depends on metabolites obtained from the host to ensure its survival. Overall, our findings suggest that Rickettsia has beneficial effects on B. tabaci and offered insights into the potential molecular mechanisms governing the interactions between Rickettsia and B. tabaci MEAM1.


Asunto(s)
Hemípteros , Ninfa , Rickettsia , Transcriptoma , Animales , Hemípteros/microbiología , Femenino , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , Masculino
19.
Environ Sci Pollut Res Int ; 31(21): 31605-31618, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38637484

RESUMEN

For the serious situation of heavy metal pollution, the use of cheap, clean, and efficient biochar to immobilize heavy metals is a good treatment method. In this paper, SA@ZIF-8/BC was prepared for the adsorption of Pb2+ in solution using sodium alginate (SA) and zeolitic imidazolate framework-8 (ZIF-8) modified corn cob biochar. The results showed that the specific surface area of modified biochar was greatly improved, with good adsorption capacity for Pb2+, strong anti-interference ability, and good economy. At the optimal adsorption pH of 5, the adsorption model of Pb2+ by SA@ZIF-8/BC was more consistent with the pseudo-second-order kinetic model and Langmuir isotherm model. This indicates that the adsorption of Pb2+ by SA@ZIF-8/BC is chemisorption and monolayer adsorption. The maximum adsorption of modified biochar was 300 mg g-1, which was 2.38 times higher than that of before modified BC (126 mg g-1). The shift in binding energy of functional groups before and after adsorption of SA@ZIF-8/BC was studied by XPS, and it was found that hydroxyl and carboxyl groups played an important role in the adsorption of Pb2+. It was demonstrated that this novel adsorbent can be effectively used for the treatment of Pb pollution in wastewater.


Asunto(s)
Alginatos , Carbón Orgánico , Plomo , Zeolitas , Adsorción , Carbón Orgánico/química , Alginatos/química , Plomo/química , Zeolitas/química , Cinética , Contaminantes Químicos del Agua/química
20.
Front Immunol ; 15: 1358960, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655256

RESUMEN

Introduction: Early detection of the virus in the environment or in infected pigs is a critical step to stop African swine fever virus (ASFV) transmission. The p22 protein encoded by ASFV KP177R gene has been shown to have no effect on viral replication and virulence and can serve as a molecular marker for distinguishing field virus strains from future candidate KP177R deletion vaccine strains. Methods: This study established an ASFV detection assay specific for the highly conserved ASFV KP177R gene based on recombinase polymerase amplification (RPA) and the CRISPR/Cas12 reaction system. The KP177R gene served as the initial template for the RPA reaction to generate amplicons, which were recognized by guide RNA to activate the trans-cleavage activity of Cas12a protein, thereby leading to non-specific cleavage of single-stranded DNA as well as corresponding color reaction. The viral detection in this assay could be determined by visualizing the results of fluorescence or lateral flow dipstick (LFD) biotin blotting for color development, and was respectively referred to as fluorescein-labeled RPA-CRISPR/Cas12a and biotin-labeled LFD RPA-CRISPR/Cas12a. The clinical samples were simultaneously subjected to the aforementioned assay, while real-time quantitative PCR (RT-qPCR) was employed as a control for determining the diagnostic concordance rate between both assays. Results: The results showed that fluorescein- and biotin-labeled LFD KP177R RPA-CRISPR/Cas12a assays specifically detected ASFV, did not cross-react with other swine pathogens including PCV2, PEDV, PDCoV, and PRV. The detection assay established in this study had a limit of detection (LOD) of 6.8 copies/µL, and both assays were completed in 30 min. The KP177R RPA-CRISPR/Cas12a assay demonstrated a diagnostic coincidence rate of 100% and a kappa value of 1.000 (p < 0.001), with six out of ten clinical samples testing positive for ASFV using both KP177R RPA-CRISPR/Cas12a and RT-qPCR, while four samples tested negative in both assays. Discussion: The rapid, sensitive and visual detection assay for ASFV developed in this study is suitable for field application in swine farms, particularly for future differentiation of field virus strains from candidate KP177R gene-deleted ASFV vaccines, which may be a valuable screening tool for ASF eradication.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteínas Bacterianas , Sistemas CRISPR-Cas , Virus de la Fiebre Porcina Africana/genética , Animales , Porcinos , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/diagnóstico , Proteínas Asociadas a CRISPR/genética , Recombinasas/genética , Recombinasas/metabolismo , Proteínas Virales/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Endodesoxirribonucleasas/genética , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA