Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2406781, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099435

RESUMEN

Anisotropic optical 2D materials are crucial for achieving multiple-quanta functions within quantum materials, which enables the fabrication of axially polarized electronic and optoelectronic devices. In this work, multiple excitonic emissions owning polarization-sensitive orientations are clearly detected in a multilayered quasi-1D ZrS3 nanoribbon with respect to the nanostripe edge. Four excitons denoted as AS1, AS2, AS, and A2 with E ⊥ b polarized direction and one prominent A1 exciton with E || b polarized emission are simultaneously detected in the polarized micro-photoluminescence (µPL) measurement of 1.9-2.2 eV at 10 K. In contrast to light emission, polarized micro-thermoreflectance (µTR) measurements are performed to identify the polarization dependence and verify the excitons in the multilayered ZrS3 nanoribbon from the perspective of light absorption. At 10 K, a prominent and broadened peak on the lower-energy side, containing an indirect resonant emission (DI) observed by µPL and an indirect defect-bound exciton peak (AInd) observed by both µPL and µTR, is simultaneously detected, confirming the existence of a quasi-direct band edge in ZrS3. A van der Waals stacked p-GaSe/n-ZrS3 heterojunction solar cell is fabricated, which demonstrates a maximum axially-polarized conversion efficiency up to 0.412% as the E || b polarized light incident onto the device.

2.
JACS Au ; 4(1): 58-71, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38274254

RESUMEN

This work investigates the characteristic of layered In6Se7 with varying phosphorus (P) dopant concentrations (In6Se7:P) from P = 0, 0.5, 1, to P = 5%. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses indicate that the structure and morphology of the In6Se7:P series compounds remain unchanged, exhibiting a monoclinic structure. Room-temperature micro-Raman (µRaman) result of all the compositions of layered In6Se7:P reveals two dominant peaks at 101 ± 3 cm-1 (i.e., In-In bonding mode) and 201 ± 3 cm-1 (i.e., Se-Se bonding mode) for each P composition in In6Se7. An extra peak at approximately 171 ± 2 cm-1 is observed and it shows enhancement at the highest P composition of In6Se7:P 5%. This mode is attributed to P-Se bonding caused by P doping inside In6Se7. All the doped and undoped In6Se7:P showed n-type conductivity, and their carrier concentrations increased with the P dopant is increased. Temperature-dependent resistivity revealed a reduction in activation energy (for the donor), as the P content is increased in the In6Se7:P samples. Kelvin probe measurement shows a decrease in work function (i.e., an energy increase of Fermi level) of the n-type In6Se7 multilayers with the increase of P content. The indirect and direct band gaps for all of the multilayer In6Se7:P of different P composition are identical. They are determined to be 0.732 eV (indirect) and 0.772 eV (direct) obtained by microtransmittance and microthermoreflectance (µTR) measurements. A rectified n-n+ homojunction was formed by stacking multilayered In6Se7/In6Se7:P 5%. The built-in potential is about Vbi ∼ 0.15 V. It agrees well with the work function difference between the two layer compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA