Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phytopathology ; 114(5): 1011-1019, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38451554

RESUMEN

Calcium deficiency is a leading cause of reduced peanut (Arachis hypogaea) seed quality and has been linked to increased disease susceptibility, specifically to soilborne fungal pathogens. Sufficient calcium at flowering time is critical to ensure proper pod development. Calcite-dissolving bacteria (CDB) isolated from farming fields can dissolve calcite (CaCO3) on plates and increase soluble calcium levels in soil. However, the phylogenetic diversity and geographic distribution of CDB is unclear. Here, we surveyed soil samples from 15 peanut-producing fields in three regions in southern Georgia, representing distinct soil compositions. We isolated CDB through differentiating media and identified 52 CDB strains. CDB abundance was not associated with any of the soil characteristics we evaluated. Three core genera, represented by 43 strains, were found in all three regions. Paenibacillus was the most common CDB found in all regions, making up 30 of the 52 identified strains. Six genera, represented by eight strains, are unique to one region. Members of the core and unique communities showed comparable solubilization indexes on plates. We conclude that a diversified phylogenetic population of CDB is present in Georgia peanut fields. Despite the phylogenetic diversity, as a population, they exhibit comparable functions in solubilizing calcite on plates.


Asunto(s)
Arachis , Bacterias , Carbonato de Calcio , Filogenia , Microbiología del Suelo , Arachis/microbiología , Carbonato de Calcio/metabolismo , Carbonato de Calcio/química , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Suelo/química , Georgia , ARN Ribosómico 16S/genética
2.
PLoS Pathog ; 19(3): e1011218, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36947557

RESUMEN

In plants, age-related resistance (ARR) refers to a gain of disease resistance during shoot or organ maturation. ARR associated with vegetative phase change, a transition from juvenile to adult stage, is a widespread agronomic trait affecting resistance against multiple pathogens. How innate immunity in a plant is differentially regulated during successive stages of shoot maturation is unclear. In this work, we found that Arabidopsis thaliana showed ARR against its bacterial pathogen Pseudomonas syringae pv. tomato DC3000 during vegetative phase change. The timing of the ARR activation was associated with a temporal drop of miR156 level. The microRNA miR156 maintains juvenile phase by inhibiting the accumulation and translation of SPL transcripts. A systematic inspection of the loss- and gain-of-function mutants of 11 SPL genes revealed that a subset of SPL genes, notably SPL2, SPL10, and SPL11, activated ARR in adult stage. The immune function of SPL10 was independent of its role in morphogenesis. Furthermore, the SPL10 mediated an age-dependent augmentation of the salicylic acid (SA) pathway partially by direct activation of PAD4. Disrupting SA biosynthesis or signaling abolished the ARR against Pto DC3000. Our work demonstrated that the miR156-SPL10 module in Arabidopsis is deployed to operate immune outputs over developmental timing.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/metabolismo , Ácido Salicílico/metabolismo
3.
PLoS Genet ; 19(3): e1010636, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857386

RESUMEN

Plants can regenerate new organs from damaged or detached tissues. In the process of de novo root regeneration (DNRR), adventitious roots are frequently formed from the wound site on a detached leaf. Salicylic acid (SA) is a key phytohormone regulating plant defenses and stress responses. The role of SA and its acting mechanisms during de novo organogenesis is still unclear. Here, we found that endogenous SA inhibited the adventitious root formation after cutting. Free SA rapidly accumulated at the wound site, which was accompanied by an activation of SA response. SA receptors NPR3 and NPR4, but not NPR1, were required for DNRR. Wounding-elevated SA compromised the expression of AUX1, and subsequent transport of auxin to the wound site. A mutation in AUX1 abolished the enhanced DNRR in low SA mutants. Our work elucidates a role of SA in regulating DNRR and suggests a potential link between biotic stress and tissue regeneration.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Salicílico/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA