Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
2.
Chem Soc Rev ; 53(13): 7091-7157, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38845536

RESUMEN

Energy storage devices with high power and energy density are in demand owing to the rapidly growing population, and lithium-ion batteries (LIBs) are promising rechargeable energy storage devices. However, there are many issues associated with the development of electrode materials with a high theoretical capacity, which need to be addressed before their commercialization. Extensive research has focused on the modification and structural design of electrode materials, which are usually expensive and sophisticated. Besides, polymer binders are pivotal components for maintaining the structural integrity and stability of electrodes in LIBs. Polyvinylidene difluoride (PVDF) is a commercial binder with superior electrochemical stability, but its poor adhesion, insufficient mechanical properties, and low electronic and ionic conductivity hinder its wide application as a high-capacity electrode material. In this review, we highlight the recent progress in developing different polymeric materials (based on natural polymers and synthetic non-conductive and electronically conductive polymers) as binders for the anodes and cathodes in LIBs. The influence of the mechanical, adhesion, and self-healing properties as well as electronic and ionic conductivity of polymers on the capacity, capacity retention, rate performance and cycling life of batteries is discussed. Firstly, we analyze the failure mechanisms of binders based on the operation principle of lithium-ion batteries, introducing two models of "interface failure" and "degradation failure". More importantly, we propose several binder parameters applicable to most lithium-ion batteries and systematically consider and summarize the relationships between the chemical structure and properties of the binder at the molecular level. Subsequently, we select silicon and sulfur active electrode materials as examples to discuss the design principles of the binder from a molecular structure point of view. Finally, we present our perspectives on the development directions of binders for next-generation high-energy-density lithium-ion batteries. We hope that this review will guide researchers in the further design of novel efficient binders for lithium-ion batteries at the molecular level, especially for high energy density electrode materials.

4.
Nat Commun ; 12(1): 54, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33397899

RESUMEN

Current power supply networks across the world are mostly based on three-phase electrical systems as an efficient and economical way for generation, transmission and distribution of electricity. Now, many electrically driven devices are relying on direct current or single-phase alternating current power supply that complicates utilization of three-phase power supply by requiring additional elements and costly switching mechanisms in the circuits. For example, light-emitting devices, which are now widely used for displays, solid-state lighting etc. typically operate with direct current power sources, although single-phase alternating current driven light-emitting devices have also gained significant attention in the recent years. Yet, light-emitting devices directly driven by a three-phase electric power has never been reported before. Benefiting from our precious work on coplanar electrodes structured light-emitting devices, in this article we demonstrate proof of a concept that light-emitting components can be driven by three-phase electric power without utilizing intricate back-end circuits and can compose state detection sensors and pixel units in a single device inspiring from three primary colors. Here we report a three-phase electric power driven electroluminescent devices fabricated featuring of flexibility and multi-functions. The design consists of three coplanar electrodes with dielectric layer(s) and light emission layer(s) coated on a top of input electrodes. It does not require transparent electrodes for electrical input and the light emission occurs when the top light-emitting layers are connected through a polar bridge. We demonstrate some applications of our three-phase electric power driven electroluminescent devices to realize pixel units, interactive rewritable displays and optical-output sensors. Furthermore, we also demonstrate the applicability of three-phase electrical power source to drive organic light-emitting devices with red, green and blue-emitting pixels and have shown high luminance (up to 6601 cd/m2) and current efficiency (up to 16.2 cd/A) from fabricated three-phase organic light-emitting devices. This novel geometry and driving method for electroluminescent devices is scalable and can be utilized even in a wider range of other types of light-emitting devices and special units.

5.
Chem Commun (Camb) ; 56(47): 6432-6435, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393948

RESUMEN

The nitro group (NO2) is one of the most common electron-withdrawing groups but it has rarely been used in the design of organic semiconductors (OSCs). Herein, we report the n-type semiconducting behavior of simple fluorenone derivatives functionalized with NO2 and CN groups. While the electron mobilities measured in the thin film field-effect transistors are modest (10-6-10-4 cm2 V-1 s-1), the nitrofluorenone OSCs offer excellent air-stability and remarkable tunability of energy levels via facile modification of the substitution pattern. We study the effect of substituents on the electrochemical properties, molecular and crystal structure, and the charge transport properties of nitrofluorenones to revitalize the underestimated potential of NO2 functionalization in organic electronics.

6.
ACS Appl Mater Interfaces ; 12(21): 24156-24164, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349474

RESUMEN

In this work, a series of fluorescent cathodically coloring electrochromic (EC) small molecules o-, m-, and p-DBFDCz with 3,5-di(9H-carbazol-9-yl)benzene (DCz) linked to dibenzofuran (DBF) at different substitutional positions were synthesized and fully characterized. These compounds are electroactive and undergo quasi-reversible two-step single-electron reduction generating radical anions and dianions. The absorptions of o-, m-, and p-DBFDCz in the neutral states lie in the UV region (λonset ≈ 350 nm), showing high transparency, while the absorption of their reduced states can be largely tuned across the visible region through driving voltage and substitutional positions. Initially generated spectroelectrochemically radical anions show absorption in the short-wavelength region of ∼380-500 nm with weak broad absorptions at longer wavelengths. On further reduction, these bands disappear on the cost of growing intense bands from dianions at longer wavelengths of 500-700 nm with some tail absorptions in the shorter-wavelength region. This renders the colors of the EC devices based on these materials, which are changed from green to red, yellow to magenta, and light to deep blue for o-, m-, and p-DBFDCz, respectively, covering four legs of the L*a*b* color space. Besides excellent optical contrast (>90%) and high coloration efficiency (up to 504 cm2 C-1), the fluorescence observed in solution of neutral o-, m-, and p-DBFDCz can be modulated between the fluorescence and quenched states by direct electrochemical redox reactions. Both EC and electrofluorochromic (EFC) processes are reversible on cycling. This research demonstrates the feasibility of developing multifunctional EC/EFC materials with multicolored electrochromism through exploiting electrochemical properties of traditional fluorescent small molecules.

7.
Dalton Trans ; 48(27): 10180-10190, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31187830

RESUMEN

A family of mono- and ditopic hydroxamic acids has been employed in the synthesis and structural and physical characterisation of discrete (0D) and (1- and 2-D) extended network coordination complexes. Examples of the latter include the 1-D coordination polymer {[Zn(ii)(L3H)2]·2MeOH}n (5; L3H2 = 2-(methylamino)phenylhydroxamic acid) and the 2-D extended network {[Cu(ii)(L2H)(H2O)(NO3)]·H2O}n (5; L2H2 = 4-amino-2-(acetoxy)phenylhydroxamic acid). The 12-MC-4 metallacrown [Cu(ii)5(L4H)4(MeOH)2(NO3)2]·3H2O·4MeOH (7) represents the first metal complex constructed using the novel ligand N-hydroxy-2-[(2-hydroxy-3-methoxybenzyl)amino]benzamide (L4H3). Variable temperature magnetic susceptibility studies confirm strong antiferromagnetic exchange between the Cu(ii) centres in 7. Coordination polymer 5 shows photoluminescence in the blue region (λPL∼ 421-450 nm) with a bathochromic shift of the emission (∼15-30 nm) from solution to the solid state.

8.
Phys Chem Chem Phys ; 18(6): 4684-96, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26799407

RESUMEN

In some donor-acceptor blends based on conjugated polymers, a pronounced charge-transfer complex (CTC) forms in the electronic ground state. In contrast to small-molecule donor-acceptor blends, the CTC concentration in polymer:acceptor solution can increase with the acceptor content in a threshold-like way. This threshold-like behavior was earlier attributed to the neighbor effect (NE) in the polymer complexation, i.e., next CTCs are preferentially formed near the existing ones; however, the NE origin is unknown. To address the factors affecting the NE, we record the optical absorption data for blends of the most studied conjugated polymers, poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene) (P3HT), with electron acceptors of fluorene series, 1,8-dinitro-9,10-antraquinone (), and 7,7,8,8-tetracyanoquinodimethane () in different solvents, and then analyze the data within the NE model. We have found that the NE depends on the polymer and acceptor molecular skeletons and solvent, while it does not depend on the acceptor electron affinity and polymer concentration. We conclude that the NE operates within a single macromolecule and stems from planarization of the polymer chain involved in the CTC with an acceptor molecule; as a result, the probability of further complexation with the next acceptor molecules at the adjacent repeat units increases. The steric and electronic microscopic mechanisms of NE are discussed.


Asunto(s)
Modelos Químicos , Polímeros/química , Soluciones
9.
J Chem Phys ; 134(4): 044520, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21280761

RESUMEN

The Raman spectra of a series of fluorine (F)∕dibenzothiophene-S,S-dioxide co-oligomers (S) of different length and alternation sequences in their backbones (FSF, FFSFF, FSFSF, and FASAF; A is the -C≡C- bridge) have been recorded and simulated theoretically. It is shown that Raman spectroscopy is useful to probe π conjugation and ground state electron polarization in these molecules, phenomena directly related with the existence of intramolecular charge-transfer processes owing to the combination of electron donor (fluorene) and acceptor (dibenzothiophene-S,S-dioxide) groups. Their geometric, electronic, and vibrational properties have been studied by density functional theory B3LYP∕6-311G(2d,p) quantum chemical calculations and compared with those for fluorene homo-oligomers. Comparative studies in solution∕solid∕melted phase led to the conclusion that the Raman wavenumbers are also sensitive to intermolecular interactions.

10.
Chem Soc Rev ; 39(7): 2695-728, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20520881

RESUMEN

Strategies for the design and construction of non-linear, 2D and 3D conjugated macromolecules are presented in this critical review. The materials, termed here as star-shaped structures, feature a core unit which may or may not provide conjugated links between arms that radiate like spokes from a central axle. The arms of the macromolecules consist of linear oligomers or irregular conjugated chains lacking a formal repeat unit. The cores range from simple atoms to single or fused aromatic units and can provide a high level of symmetry to the overall structure. The physical properties of the star-shaped materials can be markedly different to their simple, linear conjugated analogues. These differences are highlighted and we report on anomalies in absorption/emission characteristics, electronic energy levels, thermal properties and morphology of thin films. We provide numerous examples for the application of star-shaped conjugated macromolecules in organic semiconductor devices; a comparison of their device performance with those comprising analogous linear systems provides clear evidence that the star-shaped compounds are an important class of material in organic electronics. Moreover, these structures are monodisperse, well-defined, discrete molecules with 100% synthetic reproducibility, and possess high purity and excellent solubility in common organic solvents. They feature many of the attributes of plastic materials (good film-forming properties, thermal stability, flexibility) and are therefore extremely attractive alternatives to conjugated polymers (210 references).

11.
J Phys Chem B ; 112(21): 6557-66, 2008 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-18454514

RESUMEN

The singlet excited-state dynamics in poly[(9,9-dioctylfluorene)-(dibenzothiophene-S,S-dioxide)] (PFSx ) random copolymers with different contents of dibenzothiophene-S,S-dioxide (S) units have been studied by steady-state and time resolved fluorescence spectroscopies. Emission from PFSx copolymers shows a pronounced solvatochromism in polar chloroform, relative to the less polar toluene. An excited intramolecular charge transfer state (ICT) is stabilized by dipole-dipole interactions with the polar solvent cage, and possibly accompanied by conformational rearrangement of the molecular structure, in complete analogy with their small oligomer counterparts. The spectral dynamics clearly show that the ICT stabilization is strongly affected by the surrounding medium. In the solid state, emission from PFSx copolymers depends on the content of S units, showing an increase of inhomogeneous broadening and a red shift of the optical transitions. This observation is consistent with stabilization of the emissive ICT state, by the local reorientation of the surrounding molecules at the location of the excited chromophore, which results in favorable dipole-dipole interactions driven by the increase in the dielectric constant of the bulk polymer matrix with increasing S content, in analogy to what happens in polar solvent studies. Furthermore, in clear agreement with the interpretation described above, a strong increase in the emission quantum efficiency is observed in the solid state by decreasing the temperature and freezing out the molecular torsions and dipole-dipole interactions necessary to stabilize the ICT state.

12.
Chemistry ; 14(9): 2757-70, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18240117

RESUMEN

Attaching electron-rich 1,3-dithiol-2-ylidene moieties to polynitrofluorene electron acceptors leads to the formation of highly conjugated compounds 6 to 11, which combine high electron affinity with a pronounced intramolecular charge transfer (ICT) that is manifested as an intense absorption band in their visible spectra. Such a rare combination of optical and electronic properties is beneficial for several applications in optoelectronics. Thus, incorporation of fluorene-dithiole derivative 6a into photoconductive films affords photothermoplastic storage media with dramatically increased photosensitivity in the ICT region. A wide structural variation of the dithiole and fluorene parts of the molecules reveals excellent correlation between the ICT energy and the reduction potential with the Hammett's parameters for the substituents. Although only a small solvatochromism of the ICT band was observed, heating the solution led to a pronounced blueshift, which was probably as a result of increased twisting around the C9=C14 bond that links the fluorene and dithiole moieties. X-ray crystallographic analysis of 7a, 8a, 10a, 11a and 13a confirms an ICT interaction in the ground state of the molecules. The C9=C14 double bond between the donor and acceptor is substantially elongated and its length increases as the donor character of the dithiole moiety is enhanced.


Asunto(s)
Fluorenos/química , Tolueno/análogos & derivados , Cristalografía por Rayos X , Electrones , Fluorenos/síntesis química , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Estereoisomerismo , Tolueno/química
13.
Chemistry ; 14(3): 933-43, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18033698

RESUMEN

We report the synthesis, characterisation, photophysical and electrochemical properties of a series of cationic cyclometallated Ir(III) complexes of general formula [Ir(ppy)(2)(phen)]PF(6) (ppy=2-phenylpyridine, phen=a substituted phenanthroline). A feature of these complexes is that the phen ligands are substituted with one or two 9,9-dihexylfluorenyl substituents to provide extended pi conjugation, for example, the 3-[2-(9,9-dihexylfluorenyl)]phenanthroline and 3,8-bis[2-(9,9-dihexylfluorenyl)]phenanthroline ligands afford complexes 6 and 9, respectively. A single-crystal X-ray diffraction study of a related complex 18 containing the 3,8-bis(4-iodophenyl)phenanthroline ligand, revealed an octahedral coordination of the Ir atom, in which the metallated C atoms of the ppy ligands occupy cis positions. The complexes 6 and 9 displayed reversible oxidation waves in cyclic voltammetric studies (E(ox)(1/2)=+1.18 and +1.20 V, respectively, versus Ag/Ag(+) in CH(2)Cl(2)) assigned to the metal-centred Ir(III)/Ir(IV) couple. The complexes exhibit strong absorption in the UV region in solution spectra, due to spin-allowed ligand-centred (LC) (1)pi-pi* transitions; moderately intense bands occur at approximately 360-390 nm which are red-shifted with increased ligand length. The photoluminescence spectra of all the complexes were characterised by a broad band at lambda(max) approximately 595 nm assigned to a combination of (3)MLCT and (3)pi-->pi* states. The long emission lifetimes (in the microsecond time-scale) are indicative of phosphorescence: the increased ligand conjugation length in complexes 9 and 17 leads to increased lifetimes for the complexes (tau=2.56 and 2.57 micros in MeCN, respectively) compared to monofluorenyl analogues 6 and 15 (tau=1.43 and 1.39 micros, respectively). DFT calculations of the geometries and electronic structures of complexes 6', 9' (for both singlet ground state (S(0)) and triplet first excited (T(1)) states) and 18 have been performed. In the singlet ground state (S(0)) HOMO orbitals in the complexes are spread between the Ir atom and benzene rings of the phenylpyridine ligand, whereas the LUMO is mainly located on the phenanthroline ligand. Analysis of orbital localisations for the first excited (T(1)) state have been performed and compared with spectroscopic data. Spin-coated light-emitting cells (LECs) have been fabricated with the device structures ITO/PEDOT:PSS/Ir complex/Al, or Ba capped with Al (ITO=indium tin oxide, PEDOT=poly(3,4-ethylenedioxythiophene), PSS=poly(styrene) sulfonate). A maximum brightness efficiency of 9 cd A(-1) has been attained at a bias of 9 V for 17 with a Ba/Al cathode. The devices operated in air with no reduction in efficiency after storage for one week in air.


Asunto(s)
Iridio/química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Fenantrolinas/química , Cationes/síntesis química , Cationes/química , Cristalografía por Rayos X , Electroquímica , Ligandos , Luminiscencia , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Fotoquímica , Teoría Cuántica
14.
Chemistry ; 14(1): 250-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17907123

RESUMEN

The photodynamics of a C60-dithiapyrene donor-acceptor conjugate were compared with the corresponding C60-pyrene conjugate. The photoinduced charge separation and subsequent charge recombination processes were examined by time-resolved fluorescence measurements on the picosecond timescale and transient absorption measurements on the picosecond and microsecond timescales with detection in the visible and near-infrared regions. We have observed quite long lifetimes (i.e., up to 1.01 ns) for the photogenerated charge-separated state in a C60-dithiapyrene dyad without the need for i) a long spacer between the two moieties, or ii) a gain in aromaticity in the radical ion pair.

15.
J Phys Chem B ; 111(24): 6612-9, 2007 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-17461571

RESUMEN

We report electrochemical studies, spectroscopy, and electrogenerated chemiluminescence (ECL) of four monodisperse star-shaped truxene core-oligofluorene compounds (T1-T4). All oligomers produced stable radical anions and radical cations and showed blue ECL by ion annihilation with an intensity that could be seen with the naked eye. ECL spectra showed that all ECL emissions were at the same position as the fluorescence emission, except for T1, the compound with the shortest fluorene arms that produced some longer wavelength emission in addition to that seen in the fluorescence spectrum. When tetra-n-butylammonium oxalate was used as a coreactant for T1, the emission was much weaker than that in ion annihilation with the same long-wavelength emission observed, making it unlikely that this emission can be ascribed to excimer formation. The ECL intensity of T4 was about 80% of the common blue ECL emitter, 9,10-diphenylanthracene (DPA), under similar conditions.

16.
J Phys Chem B ; 111(16): 4026-35, 2007 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-17402773

RESUMEN

An analysis is performed on the molecular and electronic features in a series of trigonal molecules constituted by a central truxene core which is ramified with three oligofluorene moieties of different lengths. Arms and core are studied independently and upon threefold unification. Special emphasis is paid to the modulation of the conjugational properties in relation to substitution, molecular dimension, ring aromaticity, intermolecular forces, oxidation state, etc. Raman and optical absorption/emission spectroscopies in conjunction with computational theoretical results are combined for this purpose. The evolution of some key intensity ratios in the Raman spectra (i.e., I(1300)/I(1235)) is followed as an indication of electronic interaction between the core and the branches. The changes of the electronic delocalization upon solvation, with varying temperature in the solid state, with the nature of the aromatic unit (bithiophene/fluorene) or after electrochemical oxidation are interpreted. The modulation of the optical properties on the basis of the structure and energetics of the orbital around the gap is also addressed. Density functional theory was used to assign the vibrational and electronic spectra.

17.
J Phys Chem B ; 110(39): 19329-39, 2006 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17004789

RESUMEN

The strong solvatochromism observed for two fluorene-dibenzothiophene-S,S-dioxide oligomers in polar solvents has been investigated using steady-state and time-resolved fluorescence techniques. A low-energy absorption band, attributed to a charge-transfer (CT) state, is identified by its red shift with increasing solvent polarity. In nonpolar solvents, the emission of these conjugated luminescent oligomers shows narrow and well-resolved features, suggesting that the emission comes from a local excited state (LE), by analogy to their conjugated fluorene-based polymer counterparts. However, in polar solvents, only a featureless broad emission is observed at longer wavelengths (CT emission). A linear correlation between the energy maximum of the fluorescence emission and the solvent orientation polarizability factor Deltaf (Lippert-Mataga equation) is observed through a large range of solvents. In ethanol, below 230 K, the emission spectra of both oligomers show dual fluorescence (LE-like and CT) with the observation of a red-edge excitation effect. The stabilization of the CT emissive state by solvent polarity is accompanied/followed by structural changes to adapt the molecular structure to the new electronic density distribution. In ethanol, above 220 K, the solvent reorganization occurs on a faster time scale (less than 10 ps at 290 K), and the structural relaxation of the molecule (CT(unrelaxed) --> CT(Relaxed)) can be followed independently. The magnitude of the forward rate constant, k(1)(20 degrees C) approximately 20 x 10(9) s(-1), and the reaction energy barrier, E(a) approximately 3.9 kcal mol(-1), close to the energy barrier for viscous flow in ethanol (3.54 kcal mol(-1)), show that large-amplitude molecular motions are present in the stabilization of the CT state.

18.
Chemistry ; 12(21): 5481-94, 2006 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-16718729

RESUMEN

Derivatives of 9-[2-(1,3-dithiol-2-ylidene)ethylidene]thioxanthene have been synthesized using Horner-Wadsworth-Emmons reactions of (1,3-dithiol-2-yl)phosphonate reagents with thioxanthen-9-ylidene-acetaldehyde (5). Further reactions lead to the sterically crowded cross-conjugated "vinylogous tetrathiafulvalene" derivative 9-[2,3-bis-(4,5-dimethyl-1,3-dithiol-2-ylidene)-propylidene]thioxanthene (10). X-ray crystallography, solution electrochemistry, optical spectroscopy, spectroelectrochemistry, and simultaneous electrochemistry and electron paramagnetic resonance spectroscopy, combined with theoretical calculations performed at the B3LYP/6-31G(d) level, elucidate the interplay of the electronic and structural properties in these molecules. For compound 10, multistage redox behavior is observed: the overall electrochemical process can be represented by 10-->10(.+)-->10(2+)-->10(4+) with good reversibility for the 10-->10(.+)-->10(2+) transformations. At the tetracation stage there is the maximum gain in aromaticity at the dithiolium and thioxanthenium rings. Theory predicts that for 10, 10(.+), and 10(2+) the trans isomers are more stable than the cis isomers (by ca. 2-18 kJ mol(-1)), whereas for 10(4+) the cis isomer becomes more stable than the trans isomer (by ca. 25 kJ mol(-1)) [trans and cis refer to the arrangement of the two dithiole moieties with respect to the central ==C(R)--C(H)== fragment]. These data explain the detection in cyclic voltammograms of both trans and cis isomers of 10 and 10(.+) during the reduction of 10(4+) at fast scan rates (>100 mV s(-1)) when the cis-trans isomerization is not completed within the timescale of the experiment. The X-ray structure of the charge-transfer complex (CTC) of 10 with 2,4,5,7-tetranitrofluorene-9-dicyanomethylenefluorene (DTeF) [stoichiometry: 10(.+)(DTeF)(2) (.-)2 PhCl] reveals a twisted conformation of 10(.+) (driven by the bulky thioxanthene moiety) and provides a very rare example of segregated stacking of a fluorene acceptor in a CTC.

19.
Chemistry ; 12(10): 2709-21, 2006 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-16429472

RESUMEN

The first pi-extended tetrathiafulvalene (exTTF) dimer in which the two exTTF units are covalently connected by 1,3-dithiole rings has been obtained in a multistep synthetic procedure involving the Ullmann cross-coupling reaction by using copper(I) thiophene-2-carboxylate (CuTC). The electronic spectrum reveals a significant electronic interaction between the exTTF units. The electrochemical study carried out by cyclic voltammetry in solution and in thin-layer conditions, and the electrochemical simulation and spectroelectrochemical (SEC) measurements confirm the electronic communication and show that the oxidation of dimer 14 occurs as two consecutive 2 e(-) processes D(0)-D(0)-->D(2+)-D(0)-->D(2+)-D(2+). Theoretical calculations, performed at the B3P86/6-31G* level, confirm the experimental findings and predict that 14(2+) exists as a delocalized D(.+)-D(.+) species in the gas phase and as a localized D(2+)-D(0) species in solution (CH(3)CN or CH(2)Cl(2)). Oxidation of 14(2+) forms the tetracation 14(4+) which is constituted by two aromatic anthracene units bearing four aromatic, almost orthogonal 1,3-dithiolium cations.


Asunto(s)
Electroquímica , Compuestos Heterocíclicos/química , Antracenos/química , Dimerización , Electrónica , Modelos Químicos , Oxidación-Reducción , Estereoisomerismo
20.
Chemistry ; 12(11): 2960-6, 2006 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-16440391

RESUMEN

The dimer and trimer of 3,4-phenylenedioxythiophene (PheDOT) have been synthesized. Unlike the parent systems based on 3,4-ethylenedioxythiophene (EDOT), these compounds are quite stable under atmospheric conditions. The electronic absorption spectra of di- and tri-PheDOT exhibit a well-resolved vibronic fine structure indicative of self-rigidification of the conjugated structure by noncovalent intramolecular sulfur-oxygen interactions. Comparison of UV-visible data for the PheDOT oligomers with those of the corresponding EDOT oligomers reveals a faster decrease of the HOMO-LUMO gap with chain length for the former. Cyclic voltammetric data show that whereas PheDOT oxidizes at a lower potential than EDOT, the PheDOT dimer and trimer exhibit much higher oxidation potentials than their EDOT-based analogues. A comparative analysis of the electropolymerization of the three PheDOT-based systems shows that although PheDOT is very difficult to polymerize, its dimer and trimer can be readily electropolymerized. This unexpected increase of reactivity with chain extension is discussed with the aid of theoretical calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA