Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Orphanet J Rare Dis ; 19(1): 67, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38360726

RESUMEN

INTRODUCTION: Ataxia telangiectasia (A-T) is an autosomal recessive neurodegenerative disease with widespread systemic manifestations and marked variability in clinical phenotypes. In this study, we sought to determine whether transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) defines subsets of individuals with A-T beyond mild and classic phenotypes, enabling identification of novel features for disease classification and treatment response to therapy. METHODS: Participants with classic A-T (n = 77), mild A-T (n = 13), and unaffected controls (n = 15) were recruited from two outpatient clinics. PBMCs were isolated and bulk RNAseq was performed. Plasma was also isolated in a subset of individuals. Affected individuals were designated mild or classic based on ATM mutations and clinical and laboratory features. RESULTS: People with classic A-T were more likely to be younger and IgA deficient and to have higher alpha-fetoprotein levels and lower % forced vital capacity compared to individuals with mild A-T. In classic A-T, the expression of genes required for V(D)J recombination was lower, and the expression of genes required for inflammatory activity was higher. We assigned inflammatory scores to study participants and found that inflammatory scores were highly variable among people with classic A-T and that higher scores were associated with lower ATM mRNA levels. Using a cell type deconvolution approach, we inferred that CD4 + T cells and CD8 + T cells were lower in number in people with classic A-T. Finally, we showed that individuals with classic A-T exhibit higher SERPINE1 (PAI-1) mRNA and plasma protein levels, irrespective of age, and higher FLT4 (VEGFR3) and IL6ST (GP130) plasma protein levels compared with mild A-T and controls. CONCLUSION: Using a transcriptomic approach, we identified novel features and developed an inflammatory score to identify subsets of individuals with different inflammatory phenotypes in A-T. Findings from this study could be used to help direct treatment and to track treatment response to therapy.


Asunto(s)
Ataxia Telangiectasia , Enfermedades Neurodegenerativas , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Leucocitos Mononucleares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fenotipo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , ARN Mensajero/metabolismo
2.
Elife ; 112022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35559731

RESUMEN

Dyskeratosis congenita (DC) is a rare genetic disorder characterized by deficiencies in telomere maintenance leading to very short telomeres and the premature onset of certain age-related diseases, including pulmonary fibrosis (PF). PF is thought to derive from epithelial failure, particularly that of type II alveolar epithelial (AT2) cells, which are highly dependent on Wnt signaling during development and adult regeneration. We use human induced pluripotent stem cell-derived AT2 (iAT2) cells to model how short telomeres affect AT2 cells. Cultured DC mutant iAT2 cells accumulate shortened, uncapped telomeres and manifest defects in the growth of alveolospheres, hallmarks of senescence, and apparent defects in Wnt signaling. The GSK3 inhibitor, CHIR99021, which mimics the output of canonical Wnt signaling, enhances telomerase activity and rescues the defects. These findings support further investigation of Wnt agonists as potential therapies for DC-related pathologies.


Asunto(s)
Disqueratosis Congénita , Células Madre Pluripotentes Inducidas , Telomerasa , Células Epiteliales Alveolares/metabolismo , Disqueratosis Congénita/genética , Disqueratosis Congénita/patología , Glucógeno Sintasa Quinasa 3 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Telomerasa/genética , Telomerasa/metabolismo , Telómero/metabolismo
3.
Aging Cell ; 19(1): e13061, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31742863

RESUMEN

Cell senescence is accompanied, and in part mediated, by changes in chromatin, including histone losses, but underlying mechanisms are not well understood. We reported previously that during yeast cell senescence driven by telomere shortening, the telomeric protein Rap1 plays a major role in reprogramming gene expression by relocalizing hundreds of new target genes (called NRTS, for new Rap1 targets at senescence) to the promoters. This leads to two types of histone loss: Rap1 lowers histone level globally by repressing histone gene expression, and it also causes local nucleosome displacement at the promoters of upregulated NRTS. Here, we present evidence of direct binding between Rap1 and histone H3/H4 heterotetramers, and map amino acids involved in the interaction within the Rap1 SANT domain to amino acids 392-394 (SHY). Introduction of a point mutation within the native RAP1 locus that converts these residues to alanines (RAP1SHY ), and thus disrupts Rap1-H3/H4 interaction, does not interfere with Rap1 relocalization to NRTS at senescence, but prevents full nucleosome displacement and gene upregulation, indicating direct Rap1-H3/H4 contacts are involved in nucleosome displacement. Consistent with this, the histone H3/H4 chaperone Asf1 is similarly unnecessary for Rap1 localization to NRTS but is required for full Rap1-mediated nucleosome displacement and gene activation. Remarkably, RAP1SHY does not affect the pace of senescence-related cell cycle arrest, indicating that some changes in gene expression at senescence are not coupled to this arrest.


Asunto(s)
Nucleosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Unión a Telómeros/genética , Factores de Transcripción/genética , Regulación Fúngica de la Expresión Génica , Nucleosomas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Shelterina , Proteínas de Unión a Telómeros/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA