Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38077044

RESUMEN

PIK3R1 encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110ß or p110δ. Constitutional PIK3R1 mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have short stature or SHORT syndrome, suggesting p110α hypofunction. We sought to investigate this. In dermal fibroblasts from an APDS2 patient, we found no increased PI3K signalling, with p110δ expression markedly reduced. In preadipocytes, the APDS2 variant was potently dominant negative, associating with Irs1 and Irs2 but failing to heterodimerise with p110α. This attenuation of p110α signalling by a p110δ-activating PIK3R1 variant potentially explains co-incidence of gain-of-function and loss-of-function PIK3R1 phenotypes.

2.
Sci Adv ; 9(39): eadi8291, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37756394

RESUMEN

Ataxia-telangiectasia mutated (ATM) is a master kinase regulating DNA damage response that is activated by DNA double-strand breaks. However, ATM is also directly activated by reactive oxygen species, but how oxidative activation is achieved remains unknown. We determined the cryo-EM structure of an H2O2-activated ATM and showed that under oxidizing conditions, ATM formed an intramolecular disulfide bridge between two protomers that are rotated relative to each other when compared to the basal state. This rotation is accompanied by release of the substrate-blocking PRD region and twisting of the N-lobe relative to the C-lobe, which greatly optimizes catalysis. This active site remodeling enabled us to capture a substrate (p53) bound to the enzyme. This provides the first structural insights into how ATM is activated during oxidative stress.

3.
Nat Chem Biol ; 19(1): 18-27, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36109648

RESUMEN

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) and related class II PI3K isoforms are of increasing biomedical interest because of their crucial roles in endocytic membrane dynamics, cell division and signaling, angiogenesis, and platelet morphology and function. Herein we report the development and characterization of PhosphatidylInositol Three-kinase Class twO INhibitors (PITCOINs), potent and highly selective small-molecule inhibitors of PI3KC2α catalytic activity. PITCOIN compounds exhibit strong selectivity toward PI3KC2α due to their unique mode of interaction with the ATP-binding site of the enzyme. We demonstrate that acute inhibition of PI3KC2α-mediated synthesis of phosphatidylinositol 3-phosphates by PITCOINs impairs endocytic membrane dynamics and membrane remodeling during platelet-dependent thrombus formation. PITCOINs are potent and selective cell-permeable inhibitors of PI3KC2α function with potential biomedical applications ranging from thrombosis to diabetes and cancer.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles , Fosfatos de Fosfatidilinositol/metabolismo
4.
Elife ; 102021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34519269

RESUMEN

The mTORC1 kinase complex regulates cell growth, proliferation, and survival. Because mis-regulation of DEPTOR, an endogenous mTORC1 inhibitor, is associated with some cancers, we reconstituted mTORC1 with DEPTOR to understand its function. We find that DEPTOR is a unique partial mTORC1 inhibitor that may have evolved to preserve feedback inhibition of PI3K. Counterintuitively, mTORC1 activated by RHEB or oncogenic mutation is much more potently inhibited by DEPTOR. Although DEPTOR partially inhibits mTORC1, mTORC1 prevents this inhibition by phosphorylating DEPTOR, a mutual antagonism that requires no exogenous factors. Structural analyses of the mTORC1/DEPTOR complex showed DEPTOR's PDZ domain interacting with the mTOR FAT region, and the unstructured linker preceding the PDZ binding to the mTOR FRB domain. The linker and PDZ form the minimal inhibitory unit, but the N-terminal tandem DEP domains also significantly contribute to inhibition.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli , Regulación de la Expresión Génica , Humanos , Procesamiento de Imagen Asistido por Computador , Péptidos y Proteínas de Señalización Intracelular/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Modelos Moleculares , Dominios PDZ , Unión Proteica , Conformación Proteica , Proteínas Recombinantes , Serina-Treonina Quinasas TOR/genética
5.
Nat Commun ; 12(1): 1564, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692360

RESUMEN

The lipid phosphatidylinositol-3-phosphate (PI3P) is a regulator of two fundamental but distinct cellular processes, endocytosis and autophagy, so its generation needs to be under precise temporal and spatial control. PI3P is generated by two complexes that both contain the lipid kinase VPS34: complex II on endosomes (VPS34/VPS15/Beclin 1/UVRAG), and complex I on autophagosomes (VPS34/VPS15/Beclin 1/ATG14L). The endosomal GTPase Rab5 binds complex II, but the mechanism of VPS34 activation by Rab5 has remained elusive, and no GTPase is known to bind complex I. Here we show that Rab5a-GTP recruits endocytic complex II to membranes and activates it by binding between the VPS34 C2 and VPS15 WD40 domains. Electron cryotomography of complex II on Rab5a-decorated vesicles shows that the VPS34 kinase domain is released from inhibition by VPS15 and hovers over the lipid bilayer, poised for catalysis. We also show that the GTPase Rab1a, which is known to be involved in autophagy, recruits and activates the autophagy-specific complex I, but not complex II. Both Rabs bind to the same VPS34 interface but in a manner unique for each. These findings reveal how VPS34 complexes are activated on membranes by specific Rab GTPases and how they are recruited to unique cellular locations.


Asunto(s)
Membrana Celular/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas de Unión al GTP rab1/química , Proteínas de Unión al GTP rab1/metabolismo , Proteínas de Unión al GTP rab5/química , Proteínas de Unión al GTP rab5/metabolismo , Beclina-1/química , Beclina-1/genética , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Endosomas/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Estructura Secundaria de Proteína , Tomografía , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína de Clasificación Vacuolar VPS15/química , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab5/genética
6.
Science ; 366(6462): 203-210, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31601764

RESUMEN

The Rag guanosine triphosphatases (GTPases) recruit the master kinase mTORC1 to lysosomes to regulate cell growth and proliferation in response to amino acid availability. The nucleotide state of Rag heterodimers is critical for their association with mTORC1. Our cryo-electron microscopy structure of RagA/RagC in complex with mTORC1 shows the details of RagA/RagC binding to the RAPTOR subunit of mTORC1 and explains why only the RagAGTP/RagCGDP nucleotide state binds mTORC1. Previous kinetic studies suggested that GTP binding to one Rag locks the heterodimer to prevent GTP binding to the other. Our crystal structures and dynamics of RagA/RagC show the mechanism for this locking and explain how oncogenic hotspot mutations disrupt this process. In contrast to allosteric activation by RHEB, Rag heterodimer binding does not change mTORC1 conformation and activates mTORC1 by targeting it to lysosomes.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/química , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Dimerización , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Lisosomas/metabolismo , Espectrometría de Masas , Modelos Moleculares , Proteínas de Unión al GTP Monoméricas/sangre , Proteínas de Unión al GTP Monoméricas/genética , Mutación , Unión Proteica , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteína Reguladora Asociada a mTOR/química , Proteínas de Saccharomyces cerevisiae/sangre , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(11): 4946-4954, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30804176

RESUMEN

Cells dynamically adjust their protein translation profile to maintain homeostasis in changing environments. During nutrient stress, the kinase general control nonderepressible 2 (GCN2) phosphorylates translation initiation factor eIF2α, initiating the integrated stress response (ISR). To examine the mechanism of GCN2 activation, we have reconstituted this process in vitro, using purified components. We find that recombinant human GCN2 is potently stimulated by ribosomes and, to a lesser extent, by tRNA. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) mapped GCN2-ribosome interactions to domain II of the uL10 subunit of the ribosomal P-stalk. Using recombinant, purified P-stalk, we showed that this domain of uL10 is the principal component of binding to GCN2; however, the conserved 14-residue C-terminal tails (CTTs) in the P1 and P2 P-stalk proteins are also essential for GCN2 activation. The HisRS-like and kinase domains of GCN2 show conformational changes upon binding recombinant P-stalk complex. Given that the ribosomal P-stalk stimulates the GTPase activity of elongation factors during translation, we propose that the P-stalk could link GCN2 activation to translational stress, leading to initiation of ISR.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Secuencias de Aminoácidos , Factor 2 Eucariótico de Iniciación/metabolismo , Humanos , Fosforilación , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Relación Estructura-Actividad
8.
Autophagy ; 12(11): 2129-2144, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27630019

RESUMEN

The phosphatidylinositol 3-kinase Vps34 is part of several protein complexes. The structural organization of heterotetrameric complexes is starting to emerge, but little is known about organization of additional accessory subunits that interact with these assemblies. Combining hydrogen-deuterium exchange mass spectrometry (HDX-MS), X-ray crystallography and electron microscopy (EM), we have characterized Atg38 and its human ortholog NRBF2, accessory components of complex I consisting of Vps15-Vps34-Vps30/Atg6-Atg14 (yeast) and PIK3R4/VPS15-PIK3C3/VPS34-BECN1/Beclin 1-ATG14 (human). HDX-MS shows that Atg38 binds the Vps30-Atg14 subcomplex of complex I, using mainly its N-terminal MIT domain and bridges the coiled-coil I regions of Atg14 and Vps30 in the base of complex I. The Atg38 C-terminal domain is important for localization to the phagophore assembly site (PAS) and homodimerization. Our 2.2 Å resolution crystal structure of the Atg38 C-terminal homodimerization domain shows 2 segments of α-helices assembling into a mushroom-like asymmetric homodimer with a 4-helix cap and a parallel coiled-coil stalk. One Atg38 homodimer engages a single complex I. This is in sharp contrast to human NRBF2, which also forms a homodimer, but this homodimer can bridge 2 complex I assemblies.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Complejos Multiproteicos/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Proteínas Relacionadas con la Autofagia/química , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Células HEK293 , Humanos , Espectrometría de Masas , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
9.
Biochem J ; 473(2): 135-44, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26527737

RESUMEN

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase, and both activities are necessary for its role as a tumour suppressor. PTEN activity is controlled by phosphorylation of its intrinsically disordered C-terminal tail. A recently discovered variant of PTEN, PTEN-long (PTEN-L), has a 173-residue N-terminal extension that causes PTEN-L to exhibit unique behaviour, such as movement from one cell to another. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and biophysical assays, we show that both the N-terminal extension of PTEN-L and C-terminal tail of PTEN affect the phosphatase activity using unique mechanisms. Phosphorylation of six residues in the C-terminal tail of PTEN results in auto-inhibitory interactions with the phosphatase and C2 domains, effectively blocking both the active site and the membrane-binding interface of PTEN. Partially dephosphorylating PTEN on pThr(366)/pSer(370) results in sufficient exposure of the active site to allow a selective activation for soluble substrates. Using HDX-MS, we identified a membrane-binding element in the N-terminal extension of PTEN-L, termed the membrane-binding helix (MBH). The MBH radically alters the membrane binding mechanism of PTEN-L compared with PTEN, switching PTEN-L to a 'scooting' mode of catalysis from the 'hopping' mode that is characteristic of PTEN.


Asunto(s)
Membrana Celular/genética , Membrana Celular/metabolismo , Fosfohidrolasa PTEN/química , Fosfohidrolasa PTEN/fisiología , Secuencia de Aminoácidos , Animales , Insectos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Spodoptera , Especificidad por Sustrato/fisiología
10.
Science ; 344(6187): 1035-8, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24876499

RESUMEN

Phosphatidylinositol 4-kinases (PI4Ks) and small guanosine triphosphatases (GTPases) are essential for processes that require expansion and remodeling of phosphatidylinositol 4-phosphate (PI4P)-containing membranes, including cytokinesis, intracellular development of malarial pathogens, and replication of a wide range of RNA viruses. However, the structural basis for coordination of PI4K, GTPases, and their effectors is unknown. Here, we describe structures of PI4Kß (PI4KIIIß) bound to the small GTPase Rab11a without and with the Rab11 effector protein FIP3. The Rab11-PI4KIIIß interface is distinct compared with known structures of Rab complexes and does not involve switch regions used by GTPase effectors. Our data provide a mechanism for how PI4KIIIß coordinates Rab11 and its effectors on PI4P-enriched membranes and also provide strategies for the design of specific inhibitors that could potentially target plasmodial PI4KIIIß to combat malaria.


Asunto(s)
Quinasa I-kappa B/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Proteínas de Unión al GTP rab/química , Secuencia de Aminoácidos , Animales , Antimaláricos/química , Antimaláricos/farmacología , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Datos de Secuencia Molecular , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plasmodium/efectos de los fármacos , Plasmodium/crecimiento & desarrollo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
11.
Proc Natl Acad Sci U S A ; 110(47): 18862-7, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24190998

RESUMEN

Phosphoinositide 3-kinase gamma (PI3Kγ) has profound roles downstream of G-protein-coupled receptors in inflammation, cardiac function, and tumor progression. To gain insight into how the enzyme's activity is shaped by association with its p101 adaptor subunit, lipid membranes, and Gßγ heterodimers, we mapped these regulatory interactions using hydrogen-deuterium exchange mass spectrometry. We identify residues in both the p110γ and p101 subunits that contribute critical interactions with Gßγ heterodimers, leading to PI3Kγ activation. Mutating Gßγ-interaction sites of either p110γ or p101 ablates G-protein-coupled receptor-mediated signaling to p110γ/p101 in cells and severely affects chemotaxis and cell transformation induced by PI3Kγ overexpression. Hydrogen-deuterium exchange mass spectrometry shows that association with the p101 regulatory subunit causes substantial protection of the RBD-C2 linker as well as the helical domain of p110γ. Lipid interaction massively exposes that same helical site, which is then stabilized by Gßγ. Membrane-elicited conformational change of the helical domain could help prepare the enzyme for Gßγ binding. Our studies and others identify the helical domain of the class I PI3Ks as a hub for diverse regulatory interactions that include the p101, p87 (also known as p84), and p85 adaptor subunits; Rab5 and Gßγ heterodimers; and the ß-adrenergic receptor kinase.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/química , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/metabolismo , Conformación Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Quimiotaxis , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Medición de Intercambio de Deuterio , Activación Enzimática , Células HEK293 , Humanos , Espectrometría de Masas , Ratones , Microscopía Confocal , Células 3T3 NIH , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal/genética , Proteínas ras/metabolismo
12.
Science ; 342(6160): 866-71, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24136356

RESUMEN

Genetic mutations cause primary immunodeficiencies (PIDs) that predispose to infections. Here, we describe activated PI3K-δ syndrome (APDS), a PID associated with a dominant gain-of-function mutation in which lysine replaced glutamic acid at residue 1021 (E1021K) in the p110δ protein, the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), encoded by the PIK3CD gene. We found E1021K in 17 patients from seven unrelated families, but not among 3346 healthy subjects. APDS was characterized by recurrent respiratory infections, progressive airway damage, lymphopenia, increased circulating transitional B cells, increased immunoglobulin M, and reduced immunoglobulin G2 levels in serum and impaired vaccine responses. The E1021K mutation enhanced membrane association and kinase activity of p110δ. Patient-derived lymphocytes had increased levels of phosphatidylinositol 3,4,5-trisphosphate and phosphorylated AKT protein and were prone to activation-induced cell death. Selective p110δ inhibitors IC87114 and GS-1101 reduced the activity of the mutant enzyme in vitro, which suggested a therapeutic approach for patients with APDS.


Asunto(s)
Predisposición Genética a la Enfermedad , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/patología , Fosfatidilinositol 3-Quinasas/genética , Infecciones del Sistema Respiratorio/genética , Infecciones del Sistema Respiratorio/patología , Fosfatidilinositol 3-Quinasa Clase I , Humanos , Síndromes de Inmunodeficiencia/inmunología , Linfocitos/inmunología , Mutación , Linaje , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Infecciones del Sistema Respiratorio/inmunología
14.
Sci Signal ; 5(253): ra89, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23211529

RESUMEN

Synergistic activation by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) and receptor tyrosine kinases distinguishes p110ß from other class IA phosphoinositide 3-kinases (PI3Ks). Activation of p110ß is specifically implicated in various physiological and pathophysiological processes, such as the growth of tumors deficient in phosphatase and tensin homolog deleted from chromosome 10 (PTEN). To determine the specific contribution of GPCR signaling to p110ß-dependent functions, we identified the site in p110ß that binds to the Gßγ subunit of G proteins. Mutation of this site eliminated Gßγ-dependent activation of PI3Kß (a dimer of p110ß and the p85 regulatory subunit) in vitro and in cells, without affecting basal activity or phosphotyrosine peptide-mediated activation. Disrupting the p110ß-Gßγ interaction by mutation or with a cell-permeable peptide inhibitor blocked the transforming capacity of PI3Kß in fibroblasts and reduced the proliferation, chemotaxis, and invasiveness of PTEN-null tumor cells in culture. Our data suggest that specifically targeting GPCR signaling to PI3Kß could provide a therapeutic approach for tumors that depend on p110ß for growth and metastasis.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Fibroblastos/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Fosfatidilinositol 3-Quinasa Clase I , Fibroblastos/patología , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Fosfatidilinositol 3-Quinasas/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética
15.
Proc Natl Acad Sci U S A ; 109(43): 17424-9, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045692

RESUMEN

The endosomal sorting complexes required for transport (ESCRT) proteins have a critical function in abscission, the final separation of the daughter cells during cytokinesis. Here, we describe the structure and function of a previously uncharacterized ESCRT-III interacting protein, MIT-domain containing protein 1 (MITD1). Crystal structures of MITD1 reveal a dimer, with a microtubule-interacting and trafficking (MIT) domain at the N terminus and a unique, unanticipated phospholipase D-like (PLD) domain at the C terminus that binds membranes. We show that the MIT domain binds to a subset of ESCRT-III subunits and that this interaction mediates MITD1 recruitment to the midbody during cytokinesis. Depletion of MITD1 causes a distinct cytokinetic phenotype consistent with destabilization of the midbody and abscission failure. These results suggest a model whereby MITD1 coordinates the activity of ESCRT-III during abscission with earlier events in the final stages of cell division.


Asunto(s)
Citocinesis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Fosfolipasa D/metabolismo , Cristalografía por Rayos X , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Unión Proteica , Pliegue de Proteína
16.
Proc Natl Acad Sci U S A ; 109(38): 15259-64, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949682

RESUMEN

The p110α catalytic subunit (PIK3CA) is one of the most frequently mutated genes in cancer. We have examined the activation of the wild-type p110α/p85α and a spectrum of oncogenic mutants using hydrogen/deuterium exchange mass spectrometry (HDX-MS). We find that for the wild-type enzyme, the natural transition from an inactive cytosolic conformation to an activated form on membranes entails four distinct events. Analysis of oncogenic mutations shows that all up-regulate the enzyme by enhancing one or more of these dynamic events. We provide the first insight into the activation mechanism by mutations in the linker between the adapter-binding domain (ABD) and the Ras-binding domain (RBD) (G106V and G118D). These mutations, which are common in endometrial cancers, enhance two of the natural activation events: movement of the ABD and ABD-RBD linker relative to the rest of the catalytic subunit and breaking the C2-iSH2 interface on binding membranes. C2 domain mutants (N345K and C420R) also mimic these events, even in the absence of membranes. A third event is breaking the nSH2-helical domain contact caused by phosphotyrosine-containing peptides binding to the enzyme, which is mimicked by a helical domain mutation (E545K). Interaction of the C lobe of the kinase domain with membranes is the fourth activation event, and is potentiated by kinase domain mutations (e.g., H1047R). All mutations increased lipid binding and basal activity, even mutants distant from the membrane surface. Our results elucidate a unifying mechanism in which diverse PIK3CA mutations stimulate lipid kinase activity by facilitating allosteric motions required for catalysis on membranes.


Asunto(s)
Mutación , Fosfatidilinositol 3-Quinasas/genética , Sitio Alostérico , Animales , Catálisis , Dominio Catalítico , Fosfatidilinositol 3-Quinasa Clase I , Citosol/metabolismo , Neoplasias Endometriales/metabolismo , Activación Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Cinética , Lípidos/química , Modelos Moleculares , Conformación Molecular , Movimiento (Física) , Fosfatidilinositol 3-Quinasas/química , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal
17.
Structure ; 20(3): 414-28, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22405001

RESUMEN

The endosomal sorting complexes required for transport (ESCRTs) facilitate endosomal sorting of ubiquitinated cargo, MVB biogenesis, late stages of cytokinesis, and retroviral budding. Here we show that ubiquitin associated protein 1 (UBAP1), a subunit of human ESCRT-I, coassembles in a stable 1:1:1:1 complex with Vps23/TSG101, VPS28, and VPS37. The X-ray crystal structure of the C-terminal region of UBAP1 reveals a domain that we describe as a solenoid of overlapping UBAs (SOUBA). NMR analysis shows that each of the three rigidly arranged overlapping UBAs making up the SOUBA interact with ubiquitin. We demonstrate that UBAP1-containing ESCRT-I is essential for degradation of antiviral cell-surface proteins, such as tetherin (BST-2/CD317), by viral countermeasures, namely, the HIV-1 accessory protein Vpu and the Kaposi sarcoma-associated herpesvirus (KSHV) ubiquitin ligase K5.


Asunto(s)
Proteínas Portadoras/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Modelos Moleculares , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Antígenos CD/metabolismo , Proteínas Portadoras/genética , Cromatografía en Gel , Cristalografía por Rayos X , Proteínas Ligadas a GPI/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Reguladoras y Accesorias Virales/metabolismo
18.
Structure ; 19(8): 1127-37, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21827948

RESUMEN

Phosphoinositide 3-kinase δ is upregulated in lymphocytic leukemias. Because the p85-regulatory subunit binds to any class IA subunit, it was assumed there is a single universal p85-mediated regulatory mechanism; however, we find isozyme-specific inhibition by p85α. Using deuterium exchange mass spectrometry (DXMS), we mapped regulatory interactions of p110δ with p85α. Both nSH2 and cSH2 domains of p85α contribute to full inhibition of p110δ, the nSH2 by contacting the helical domain and the cSH2 via the C terminus of p110δ. The cSH2 inhibits p110ß and p110δ, but not p110α, implying that p110α is uniquely poised for oncogenic mutations. Binding RTK phosphopeptides disengages the SH2 domains, resulting in exposure of the catalytic subunit. We find that phosphopeptides greatly increase the affinity of the heterodimer for PIP2-containing membranes measured by FRET. DXMS identified regions decreasing exposure at membranes and also regions gaining exposure, indicating loosening of interactions within the heterodimer at membranes.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/química , Lípidos de la Membrana/química , Fosfatidilinositol 3-Quinasas/química , Sustitución de Aminoácidos , Animales , Fosfatidilinositol 3-Quinasa Clase I , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Medición de Intercambio de Deuterio , Humanos , Liposomas/química , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores del Factor de Crecimiento Derivado de Plaquetas/química , Propiedades de Superficie
19.
Mol Cell ; 41(5): 567-78, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21362552

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. The structure of a p110ß/p85ß complex identifies an inhibitory function for the C-terminal SH2 domain (cSH2) of the p85 regulatory subunit. Mutagenesis of a cSH2 contact residue activates downstream signaling in cells. This inhibitory contact ties up the C-terminal region of the p110ß catalytic subunit, which is essential for lipid kinase activity. In vitro, p110ß basal activity is tightly restrained by contacts with three p85 domains: the cSH2, nSH2, and iSH2. RTK phosphopeptides relieve inhibition by nSH2 and cSH2 using completely different mechanisms. The binding site for the RTK's pYXXM motif is exposed on the cSH2, requiring an extended RTK motif to reach and disrupt the inhibitory contact with p110ß. This contrasts with the nSH2 where the pY-binding site itself forms the inhibitory contact. This establishes an unusual mechanism by which p85 SH2 domains contribute to RTK signaling specificities.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Regulación Enzimológica de la Expresión Génica , Secuencias de Aminoácidos , Animales , Sitios de Unión , Humanos , Enlace de Hidrógeno , Insectos , Ratones , Mutagénesis , Mutación , Fosforilación , Conformación Proteica , Estructura Terciaria de Proteína , Dominios Homologos src
20.
Autophagy ; 6(6): 805-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20574157

RESUMEN

Vps34 is the ancestral phosphatidylinositol 3-kinase (PtdIns3K) isoform and is essential for endosomal trafficking of proteins to the vacuole/lysosome, autophagy and phagocytosis. Vps34-containing complexes associate with specific cellular compartments to produce PtdIns(3)P. Understanding the roles of Vps34 has been hampered by the lack of potent, specific inhibitors. To boost development of Vps34 inhibitors, we determined the crystal structures of Vps34 alone and in complexes with multitargeted PtdIns3K inhibitors. These structures provided a first glimpse into the uniquely constricted ATP-binding site of Vps34 and enabled us to model Vps34 regulation. We showed that the substrate-binding "activation" loop and the flexibly attached amphipathic C-terminal helix are crucial for catalysis on membranes. The C-terminal helix also suppresses ATP hydrolysis in the absence of membranes. We propose that membrane binding shifts the C-terminal helix to orient the enzyme for catalysis, and the Vps15 regulatory subunit, which binds to this and the preceding helix, may facilitate this process. This C-terminal region may also represent a target for specific, non-ATP-competitive PtdIns3K inhibitors.


Asunto(s)
Autofagia/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Dominio Catalítico , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fosfatidilinositol 3-Quinasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA