Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Eur J Immunol ; 52(5): 825-834, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35112355

RESUMEN

The Three Prime Repair EXonuclease I (TREX1) is critical for degrading post-apoptosis DNA. Mice expressing catalytically inactive TREX1 (TREX1 D18N) develop lupus-like autoimmunity due to chronic sensing of undegraded TREX1 DNA substrates, production of the inflammatory cytokines, and the inappropriate activation of innate and adaptive immunity. This study aimed to investigate Thelper (Th) dysregulation in the TREX1 D18N model system as a potential mechanism for lupus-like autoimmunity. Comparison of immune cells in secondary lymphoid organs, spleen and peripheral lymph nodes (LNs) between TREX1 D18N mice and the TREX1 null mice revealed that the TREX1 D18N mice exhibit a Th1 bias. Additionally, the T-follicular helper cells (Tfh) and the germinal celter (GC) B cells were also elevated in the TREX1 D18N mice. Targeting Bcl6, a lineage-defining transcription factor for Tfh and GC B cells, with a commercially available Bcl6 inhibitor, FX1, attenuated Tfh, GC, and Th1 responses, and rescued TREX1 D18N mice from autoimmunity. The study presents Tfh and GC B-cell responses as potential targets in autoimmunity and that Bcl6 inhibitors may offer therapeutic approach in TREX1-associated or other lupus-like diseases.


Asunto(s)
Autoinmunidad , Centro Germinal , Animales , Diferenciación Celular , ADN , Modelos Animales de Enfermedad , Exodesoxirribonucleasas , Ratones , Ratones Noqueados , Fosfoproteínas , Proteínas Proto-Oncogénicas c-bcl-6/genética , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Células T Auxiliares Foliculares , Linfocitos T Colaboradores-Inductores
2.
Front Immunol ; 12: 660184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868310

RESUMEN

Mutations in the TREX1 3' → 5' exonuclease are associated with a spectrum of autoimmune disease phenotypes in humans and mice. Failure to degrade DNA activates the cGAS-STING DNA-sensing pathway signaling a type-I interferon (IFN) response that ultimately drives immune system activation. TREX1 and the cGAS-STING DNA-sensing pathway have also been implicated in the tumor microenvironment, where TREX1 is proposed to degrade tumor-derived DNA that would otherwise activate cGAS-STING. If tumor-derived DNA were not degraded, the cGAS-STING pathway would be activated to promote IFN-dependent antitumor immunity. Thus, we hypothesize TREX1 exonuclease inhibition as a novel immunotherapeutic strategy. We present data demonstrating antitumor immunity in the TREX1 D18N mouse model and discuss theory surrounding the best strategy for TREX1 inhibition. Potential complications of TREX1 inhibition as a therapeutic strategy are also discussed.


Asunto(s)
Enfermedades Autoinmunes/inmunología , ADN/inmunología , Exodesoxirribonucleasas/inmunología , Proteínas de la Membrana/inmunología , Nucleotidiltransferasas/inmunología , Fosfoproteínas/inmunología , Animales , Antineoplásicos/inmunología , Antineoplásicos/uso terapéutico , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Células Cultivadas , ADN/genética , ADN/metabolismo , Modelos Animales de Enfermedad , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Inmunoterapia/métodos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones de la Cepa 129 , Ratones Noqueados , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología
3.
DNA Repair (Amst) ; 94: 102894, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32615442

RESUMEN

The cytosolic Three prime Repair EXonuclease 1 (TREX1) is a powerful DNA-degrading enzyme required for clearing cytosolic DNA to prevent aberrant inflammation and autoimmunity. In the absence of TREX1 activity, cytosolic DNA pattern recognition receptors of the innate immune system are constitutively activated by undegraded TREX1 substrates. This triggers a chronic inflammatory response in humans expressing mutant TREX1 alleles, eliciting a spectrum of rare autoimmune diseases dependent on the nature of the mutation. The precise origins of cytosolic DNA targeted by TREX1 continue to emerge, but DNA emerging from the nucleus or taken up by the cell could represent potential sources. In this Review, we explore the biochemical and immunological data supporting the role of TREX1 in suppressing cytosolic DNA sensing, and discuss the possibility that TREX1 may contribute to maintenance of genome integrity.


Asunto(s)
Citosol/enzimología , ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Mutación , Fosfoproteínas/metabolismo , Animales , Autoinmunidad , Exodesoxirribonucleasas/genética , Humanos , Inflamación , Fosfoproteínas/genética
4.
J Immunol ; 204(2): 348-359, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31826941

RESUMEN

Autoimmunity can result when cells fail to properly dispose of DNA. Mutations in the three-prime repair exonuclease 1 (TREX1) cause a spectrum of human autoimmune diseases resembling systemic lupus erythematosus. The cytosolic dsDNA sensor, cyclic GMP-AMP synthase (cGAS), and the stimulator of IFN genes (STING) are required for pathogenesis, but specific cells in which DNA sensing and subsequent type I IFN (IFN-I) production occur remain elusive. In this study, we demonstrate that TREX1 D18N catalytic deficiency causes dysregulated IFN-I signaling and autoimmunity in mice. Moreover, we show that bone marrow-derived cells drive this process. We identify both innate immune and, surprisingly, activated T cells as sources of pathological IFN-α production. These findings demonstrate that TREX1 enzymatic activity is crucial to prevent inappropriate DNA sensing and IFN-I production in immune cells, including normally low-level IFN-α-producing cells. These results expand our understanding of DNA sensing and innate immunity in T cells and may have relevance to the pathogenesis of human disease caused by TREX1 mutation.


Asunto(s)
Exodesoxirribonucleasas/genética , Lupus Eritematoso Sistémico/genética , Fosfoproteínas/genética , Linfocitos T/inmunología , Animales , Autoantígenos/inmunología , Autoinmunidad , Células Cultivadas , ADN/inmunología , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Interferón-alfa/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/metabolismo
5.
Methods Enzymol ; 625: 109-133, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31455522

RESUMEN

Three-prime Repair Exonuclease (TREX1) degrades ssDNA and dsDNA. TREX1 localizes to the perinuclear space in cells and degrades cytosolic DNA to prevent aberrant nucleic acid sensing and immune activation in humans and mice. Mutations in the TREX1 gene cause a spectrum of human autoimmune diseases including Aicardi-Goutières syndrome, familial chilblain lupus, retinal vasculopathy with cerebral leukodystrophy, and are associated with systemic lupus erythematosus. More than 60 disease-causing TREX1 variants have been identified including dominant and recessive, missense, and frameshift mutations that map to the catalytic core region and to the C-terminal cell localization region. The TREX1-disease causing mutations affect exonuclease activity at varied levels. In this chapter, we describe methods to purify variant recombinant TREX1 enzymes and measure the exonuclease activity using ssDNA and dsDNA substrates. The relationships between TREX1 activities, types of TREX1 mutations, and TREX1-associated autoimmune diseases are considered.


Asunto(s)
Exodesoxirribonucleasas/metabolismo , Fosfoproteínas/metabolismo , Animales , Autoinmunidad/genética , Autoinmunidad/fisiología , Exodesoxirribonucleasas/genética , Humanos , Fosfoproteínas/genética
6.
Autoimmunity ; 51(7): 333-344, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30422000

RESUMEN

Anaemia is commonly observed in chronic inflammatory conditions, including systemic lupus erythematosus (SLE), where ∼50% of patients display clinical signs of anaemia. Mutation at the aspartate residue 18 of the three prime repair exonuclease 1 (TREX1) gene causes a monogenic form of cutaneous lupus in humans and the genetically precise TREX1 D18N mice recapitulate a lupus-like disease. TREX1 degrades single- and double-stranded DNA (dsDNA), and the link between failed DNA degradation by nucleases, including nucleoside-diphosphate kinases (NM23H1/H2) and Deoxyribonuclease II (DNase II), and anaemia prompted our studies to investigate whether TREX1 dysfunction contributes to anaemia. Utilizing the TREX1 D18N mice we demonstrate that (1) TREX1 mutant mice develop normocytic normochromic anaemia and (2) TREX1 exonuclease participates in the degradation of DNA originating from erythroblast nuclei during definitive erythropoiesis. Gene expression, hematocrit, hemoglobin, immunohistochemistry (IHC) and flow cytometry were used to quantify dysfunctional erythropoiesis. An altered response to induced anaemia in the TREX1 D18N mice was determined through IHC, flow cytometry, and interferon-stimulated gene (ISG) expression analysis of the liver, spleen and erythroblastic islands (EBIs). IHC, flow cytometry, and ISG expression studies were performed in vitro to determine the role of TREX1 in the degradation of erythroblast DNA within EBIs. The TREX1 D18N mice exhibit altered erythropoiesis including a 20% reduction in hematocrit, 10-20 fold increased erythropoietic gene expression levels in the spleen and phenotypic signs of normocytic normochromic anaemia. Anaemia in TREX1 D18N mice is accompanied by increased erythropoietin (Epo), normal hepcidin levels and the TREX1 D18N mice display an inappropriate response to anaemic challenge. Enhanced ISG expression results from failed processing and subsequent sensing of undegraded erythroblast DNA in EBIs. TREX1 participates in the degradation of erythroblast DNA in the EBI and TREX1 D18N mice exhibit a normocytic normochromic anaemia.

7.
Biochemistry ; 57(47): 6624-6636, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30380297

RESUMEN

The dNTP triphosphohydrolase SAMHD1 is a regulator of cellular dNTP pools. Given its central role in nucleotide metabolism, SAMHD1 performs important functions in cellular homeostasis, cell cycle regulation, and innate immunity. It therefore represents a high-profile target for small molecule drug design. SAMHD1 has a complex mechanism of catalytic activation that makes the design of an activating compound challenging. However, an inhibitor of SAMHD1 could serve multiple therapeutic roles, including the potentiation of antiviral and anticancer drug regimens. The lack of high-throughput screens that directly measure SAMHD1 catalytic activity has impeded efforts to identify inhibitors of SAMHD1. Here we describe a novel high-throughput screen that directly measures SAMHD1 catalytic activity. This assay results in a colorimetric end point that can be read spectrophotometrically and utilizes bis(4-nitrophenyl) phosphate as the substrate and Mn2+ as the activating cation that facilitates catalysis. When used to screen a library of Food and Drug Administration-approved drugs, this HTS identified multiple novel compounds that inhibited SAMHD1 dNTPase activity at micromolar concentrations.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Nitrofenoles/farmacología , Proteína 1 que Contiene Dominios SAM y HD/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Manganeso/farmacología , Multimerización de Proteína
8.
Nano Lett ; 17(11): 7110-7116, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28967259

RESUMEN

Many regulated epigenetic elements and base lesions found in genomic DNA can both directly impact gene expression and play a role in disease processes. However, due to their noncanonical nature, they are challenging to assess with conventional technologies. Here, we present a new approach for the targeted detection of diverse modified bases in DNA. We first use enzymatic components of the DNA base excision repair pathway to install an individual affinity label at each location of a selected modified base with high yield. We then probe the resulting material with a solid-state nanopore assay capable of discriminating labeled DNA from unlabeled DNA. The technique features exceptional modularity via selection of targeting enzymes, which we establish through the detection of four DNA base elements: uracil, 8-oxoguanine, T:G mismatch, and the methyladenine analog 1,N6-ethenoadenine. Our results demonstrate the potential for a quantitative nanopore assessment of a broad range of base modifications.


Asunto(s)
Técnicas Biosensibles/métodos , Daño del ADN , ADN/análisis , Nanoporos , Neoplasias/genética , Adenina/análogos & derivados , Disparidad de Par Base , ADN/genética , Reparación del ADN , Epigénesis Genética , Guanina/análogos & derivados , Guanina/análisis , Humanos , Modelos Moleculares , Nanoporos/ultraestructura , Nanotecnología/métodos , Uracilo/análisis
9.
Antioxid Redox Signal ; 27(16): 1317-1331, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28398823

RESUMEN

AIMS: Proliferative signaling involves reversible posttranslational oxidation of proteins. However, relatively few molecular targets of these modifications have been identified. We investigate the role of protein oxidation in regulation of SAMHD1 catalysis. RESULTS: Here we report that SAMHD1 is a major target for redox regulation of nucleotide metabolism and cell cycle control. SAMHD1 is a triphosphate hydrolase, whose function involves regulation of deoxynucleotide triphosphate pools. We demonstrate that the redox state of SAMHD1 regulates its catalytic activity. We have identified three cysteine residues that constitute an intrachain disulfide bond "redox switch" that reversibly inhibits protein tetramerization and catalysis. We show that proliferative signals lead to SAMHD1 oxidation in cells and oxidized SAMHD1 is localized outside of the nucleus. Innovation and Conclusions: SAMHD1 catalytic activity is reversibly regulated by protein oxidation. These data identify a previously unknown mechanism for regulation of nucleotide metabolism by SAMHD1. Antioxid. Redox Signal. 27, 1317-1331.


Asunto(s)
Cisteína/química , Oxidación-Reducción , Proteína 1 que Contiene Dominios SAM y HD/química , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Dominio Catalítico , Ciclo Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proliferación Celular , Dicroismo Circular , Dispersión Dinámica de Luz , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Nucleótidos/metabolismo , Multimerización de Proteína
10.
J Autoimmun ; 81: 13-23, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28325644

RESUMEN

TREX1/DNASE III, the most abundant 3'-5' DNA exonuclease in mammalian cells, is tail-anchored on the endoplasmic reticulum (ER). Mutations at the N-terminus affecting TREX1 DNase activity are associated with autoimmune and inflammatory conditions such as Aicardi-Goutières syndrome (AGS). Mutations in the C-terminus of TREX1 cause loss of localization to the ER and dysregulation of oligosaccharyltransferase (OST) activity, and are associated with retinal vasculopathy with cerebral leukodystrophy (RVCL) and in some cases with systemic lupus erythematosus (SLE). Here we investigate mice with conditional expression of the most common RVCL mutation, V235fs, and another mouse expressing a conditional C-terminal mutation, D272fs, associated with a case of human SLE. Mice homozygous for either mutant allele express the encoded human TREX1 truncations without endogenous mouse TREX1, and both remain DNase active in tissues. The two mouse strains are similar phenotypically without major signs of retinal, cerebral or renal disease but exhibit striking elevations of autoantibodies in the serum. The broad range of autoantibodies is primarily against non-nuclear antigens, in sharp contrast to the predominantly DNA-related autoantibodies produced by a TREX1-D18N mouse that specifically lacks DNase activity. We also found that treatment with an OST inhibitor, aclacinomycin, rapidly suppressed autoantibody production in the TREX1 frame-shift mutant mice. Together, our study presents two new mouse models based on TREX1 frame-shift mutations with a unique set of serologic autoimmune-like phenotypes.


Asunto(s)
Autoinmunidad/genética , Autoinmunidad/inmunología , Exodesoxirribonucleasas/genética , Mutación del Sistema de Lectura , Fosfoproteínas/genética , Aclarubicina/análogos & derivados , Aclarubicina/farmacología , Sustitución de Aminoácidos , Animales , Apoptosis/genética , Apoptosis/inmunología , Autoanticuerpos/inmunología , Autoinmunidad/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Activación Enzimática , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Transgénicos , Fenotipo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Retina/inmunología , Retina/metabolismo , Retina/patología , Timocitos/inmunología , Timocitos/metabolismo , Transcriptoma
11.
J Invest Dermatol ; 136(12): 2345-2355, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27365293

RESUMEN

Trex2 is a keratinocyte-specific 3'-deoxyribonuclease that participates in the maintenance of skin homeostasis after DNA damage. Here, we show that this exonuclease is strongly upregulated in human psoriasis, a hyperproliferative and inflammatory skin disease. Similarly, the imiquimod (IMQ)- and Il23-induced mouse psoriasis was associated with a substantial upregulation of Trex2, which was recruited into fragmented chromatin in keratinocytes that were undergoing impaired proliferation, differentiation, and cell death, indicating an important role in DNA processing. Using Trex2 knockout mice, we have found that Trex2 deficiency attenuated IMQ-induced psoriasis-like skin inflammation and enhanced IMQ-induced parakeratosis. Also, Il23-induced ear swelling was diminished in Trex2 knockout mice in comparison with wild-type (wt) mice. Transcriptome analysis identified multiple genes that were deregulated by Trex2 loss after treatment with IMQ. Specifically, immune response genes and pathways normally associated with inflammation were downregulated, whereas those related to skin differentiation and chromatin biology showed increased expression. Interestingly, Trex2 deficiency led to decreased IMQ-induced keratinocyte death via both cell autonomous and noncell autonomous mechanisms. Hence, our data indicate that Trex2 acts as a critical factor in the pathogenesis of psoriasis by promoting keratinocyte apoptosis and enucleation and thereby influencing skin immune responses.


Asunto(s)
Aminoquinolinas/farmacología , Exodesoxirribonucleasas/genética , Regulación de la Expresión Génica , Psoriasis/genética , Animales , Apoptosis/genética , Biopsia con Aguja , Estudios de Casos y Controles , Supervivencia Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Imiquimod , Inmunohistoquímica , Queratinocitos/citología , Ratones , Ratones Noqueados , Fenotipo , Pronóstico , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Índice de Severidad de la Enfermedad , Regulación hacia Arriba
12.
Oncotarget ; 6(26): 22375-96, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26090614

RESUMEN

TREX2 is a 3'-DNA exonuclease specifically expressed in keratinocytes. Here, we investigated the relevance and mechanisms of TREX2 in ultraviolet (UV)-induced skin carcinogenesis. TREX2 expression was up-regulated by chronic UV exposure whereas it was de-regulated or lost in human squamous cell carcinomas (SCCs). Moreover, we identified SNPs in the TREX2 gene that were more frequent in patients with head and neck SCCs than in healthy individuals. In mice, TREX2 deficiency led to enhanced susceptibility to UVB-induced skin carcinogenesis which was preceded by aberrant DNA damage removal and degradation as well as reduced inflammation. Specifically, TREX2 loss diminished the up-regulation of IL12 and IFNγ, key cytokines related to DNA repair and antitumor immunity. In UV-treated keratinocytes, TREX2 promoted DNA repair and passage to late apoptotic stages. Notably, TREX2 was recruited to low-density nuclear chromatin and micronuclei, where it interacted with phosphorylated H2AX histone, which is a critical player in both DNA repair and cell death. Altogether, our data provide new insights in the molecular mechanisms of TREX2 activity and establish cell autonomous and non-cell autonomous functions of TREX2 in the UVB-induced skin response.


Asunto(s)
Carcinoma de Células Escamosas/enzimología , Exodesoxirribonucleasas/metabolismo , Fosfoproteínas/metabolismo , Neoplasias Cutáneas/enzimología , Rayos Ultravioleta/efectos adversos , Animales , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/patología , Daño del ADN , Exodesoxirribonucleasas/genética , Femenino , Humanos , Queratinocitos/enzimología , Queratinocitos/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/genética , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología
13.
Cell Host Microbe ; 17(4): 423-5, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25856751

RESUMEN

Viruses possess elaborate defensive mechanisms to evade host innate immune responses. In this issue of Cell Host & Microbe, Stavrou et al. (2015) reveal how the murine leukemia virus uses a sugar-protein shield to protect from inevitable destruction by cellular innate immune factors including the APOBEC3 DNA mutating enzyme.


Asunto(s)
Citidina Desaminasa/metabolismo , ADN Viral/metabolismo , Interferón beta/metabolismo , Virus de la Leucemia Murina/inmunología , Macrófagos/inmunología , Animales
14.
Proc Natl Acad Sci U S A ; 112(16): 5117-22, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848017

RESUMEN

The TREX1 gene encodes a potent DNA exonuclease, and mutations in TREX1 cause a spectrum of lupus-like autoimmune diseases. Most lupus patients develop autoantibodies to double-stranded DNA (dsDNA), but the source of DNA antigen is unknown. The TREX1 D18N mutation causes a monogenic, cutaneous form of lupus called familial chilblain lupus, and the TREX1 D18N enzyme exhibits dysfunctional dsDNA-degrading activity, providing a link between dsDNA degradation and nucleic acid-mediated autoimmune disease. We determined the structure of the TREX1 D18N protein in complex with dsDNA, revealing how this exonuclease uses a novel DNA-unwinding mechanism to separate the polynucleotide strands for single-stranded DNA (ssDNA) loading into the active site. The TREX1 D18N dsDNA interactions coupled with catalytic deficiency explain how this mutant nuclease prevents dsDNA degradation. We tested the effects of TREX1 D18N in vivo by replacing the TREX1 WT gene in mice with the TREX1 D18N allele. The TREX1 D18N mice exhibit systemic inflammation, lymphoid hyperplasia, vasculitis, and kidney disease. The observed lupus-like inflammatory disease is associated with immune activation, production of autoantibodies to dsDNA, and deposition of immune complexes in the kidney. Thus, dysfunctional dsDNA degradation by TREX1 D18N induces disease in mice that recapitulates many characteristics of human lupus. Failure to clear DNA has long been linked to lupus in humans, and these data point to dsDNA as a key substrate for TREX1 and a major antigen source in mice with dysfunctional TREX1 enzyme.


Asunto(s)
Eritema Pernio/enzimología , Eritema Pernio/genética , Daño del ADN , ADN/metabolismo , Exodesoxirribonucleasas/genética , Inflamación/patología , Lupus Eritematoso Cutáneo/enzimología , Lupus Eritematoso Cutáneo/genética , Fosfoproteínas/genética , Alelos , Animales , Anticuerpos/inmunología , Autoinmunidad/inmunología , Secuencia de Bases , Eritema Pernio/patología , ADN/química , ADN/genética , Exodesoxirribonucleasas/química , Humanos , Lupus Eritematoso Cutáneo/patología , Ratones , Datos de Secuencia Molecular , Mutación/genética , Conformación de Ácido Nucleico , Fenotipo , Fosfoproteínas/química , Biosíntesis de Proteínas
15.
Cell Cycle ; 14(4): 668-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25664393

RESUMEN

RNA-DNA hybrids play essential roles in a variety of biological processes, including DNA replication, transcription, and viral integration. Ribonucleotides incorporated within DNA are hydrolyzed by RNase H enzymes in a removal process that is necessary for maintaining genomic stability. In order to understand the structural determinants involved in recognition of a hybrid substrate by RNase H we have determined the crystal structure of a dodecameric non-polypurine/polypyrimidine tract RNA-DNA duplex. A comparison to the same sequence bound to RNase H, reveals structural changes to the duplex that include widening of the major groove to 12.5 Å from 4.2 Å and decreasing the degree of bending along the axis which may play a crucial role in the ribonucleotide recognition and cleavage mechanism within RNase H. This structure allows a direct comparison to be made about the conformational changes induced in RNA-DNA hybrids upon binding to RNase H and may provide insight into how dysfunction in the endonuclease causes disease.


Asunto(s)
ADN/química , Modelos Moleculares , ARN/química , Ribonucleasa H/metabolismo , Ribonucleótidos/metabolismo , Cristalografía por Rayos X , ADN/metabolismo , Conformación de Ácido Nucleico , Oligonucleótidos/genética , ARN/metabolismo
16.
J Biol Chem ; 289(16): 11556-11565, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24616097

RESUMEN

TREX1 is a 3'-deoxyribonuclease that degrades single- and double-stranded DNA (ssDNA and dsDNA) to prevent inappropriate nucleic acid-mediated immune activation. More than 40 different disease-causing TREX1 mutations have been identified exhibiting dominant and recessive genetic phenotypes in a spectrum of autoimmune disorders. Mutations in TREX1 at positions Asp-18 and Asp-200 to His and Asn exhibit dominant autoimmune phenotypes associated with the clinical disorders familial chilblain lupus and Aicardi-Goutières syndrome. Our previous biochemical studies showed that the TREX1 dominant autoimmune disease phenotype depends upon an intact DNA-binding process coupled with dysfunctional active site chemistry. Studies here show that the TREX1 Arg-62 residues extend across the dimer interface into the active site of the opposing protomer to coordinate substrate DNA and to affect catalysis in the opposing protomer. The TREX1(R62A/R62A) homodimer exhibits ∼50-fold reduced ssDNA and dsDNA degradation activities relative to TREX1(WT). The TREX1 D18H, D18N, D200H, and D200N dominant mutant enzymes were prepared as compound heterodimers with the TREX1 R62A substitution in the opposing protomer. The TREX1(D18H/R62A), TREX1(D18N/R62A), TREX1(D200H/R62A), and TREX1(D200N/R62A) compound heterodimers exhibit higher levels of ss- and dsDNA degradation activities than the homodimers demonstrating the requirement for TREX1 Arg-62 residues to provide necessary structural elements for full catalytic activity in the opposing TREX1 protomer. This concept is further supported by the loss of dominant negative effects in the TREX1 D18H, D18N, D200H, and D200N compound heterodimers. These data provide compelling evidence for the required TREX1 dimeric structure for full catalytic function.


Asunto(s)
ADN de Cadena Simple/química , Exodesoxirribonucleasas/química , Fosfoproteínas/química , Multimerización de Proteína/fisiología , Subunidades de Proteína/química , Sustitución de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/enzimología , Enfermedades Autoinmunes del Sistema Nervioso/genética , Catálisis , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Mutación Missense , Malformaciones del Sistema Nervioso/enzimología , Malformaciones del Sistema Nervioso/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Estructura Cuaternaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
17.
J Biol Chem ; 288(40): 28881-92, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23979357

RESUMEN

TREX1 is an autonomous 3'-exonuclease that degrades DNA to prevent inappropriate immune activation. The TREX1 protein is composed of 314 amino acids; the N-terminal 242 amino acids contain the catalytic domain, and the C-terminal region (CTR) localizes TREX1 to the cytosolic compartment. In this study, we show that TREX1 modification by ubiquitination is controlled by a highly conserved sequence in the CTR to affect cellular localization. Transfection of TREX1 deletion constructs into human cells demonstrated that this sequence is required for ubiquitination at multiple lysine residues through a "non-canonical" ubiquitin linkage. A proteomic approach identified ubiquilin 1 as a TREX1 CTR-interacting protein, and this interaction was verified in vitro and in vivo. Cotransfection studies indicated that ubiquilin 1 localizes TREX1 to cytosolic punctate structures dependent upon the TREX1 CTR and lysines within the TREX1 catalytic core. Several TREX1 mutants linked to the autoimmune diseases Aicardi-Goutières syndrome and systemic lupus erythematosus that exhibit full catalytic function were tested for altered ubiquitin modification and cellular localization. Our data show that these catalytically competent disease-causing TREX1 mutants exhibit differential levels of ubiquitination relative to WT TREX1, suggesting a novel mechanism of dysfunction. Furthermore, these differentially ubiquitinated disease-causing mutants also exhibit altered ubiquilin 1 co-localization. Thus, TREX1 post-translational modification indicates an additional mechanism by which mutations disrupt TREX1 biology, leading to human autoimmune disease.


Asunto(s)
Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ubiquitinación , Proteínas Adaptadoras Transductoras de Señales , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Humanos , Lupus Eritematoso Sistémico/metabolismo , Lisina/metabolismo , Proteínas Mutantes/metabolismo , Malformaciones del Sistema Nervioso/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Relación Estructura-Actividad
18.
Hum Mutat ; 34(8): 1066-70, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23592335

RESUMEN

Aicardi-Goutières syndrome is an inflammatory disorder resulting from mutations in TREX1, RNASEH2A/2B/2C, SAMHD1, or ADAR1. Here, we provide molecular, biochemical, and cellular evidence for the pathogenicity of two synonymous variants in RNASEH2A. Firstly, the c.69G>A (p.Val23Val) mutation causes the formation of a splice donor site within exon 1, resulting in an out of frame deletion at the end of exon 1, leading to reduced RNase H2 protein levels. The second mutation, c.75C>T (p.Arg25Arg), also introduces a splice donor site within exon 1, and the internal deletion of 18 amino acids. The truncated protein still forms a heterotrimeric RNase H2 complex, but lacks catalytic activity. However, as a likely result of leaky splicing, a small amount of full-length active protein is apparently produced in an individual homozygous for this mutation. Recognition of the disease causing status of these variants allows for diagnostic testing in relevant families.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/genética , Mutación Puntual , Sitios de Empalme de ARN , Ribonucleasa H/genética , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/enzimología , Femenino , Variación Genética , Humanos , Lactante , Recién Nacido , Masculino , Mutación Missense , Malformaciones del Sistema Nervioso/diagnóstico , Malformaciones del Sistema Nervioso/enzimología , Ribonucleasa H/metabolismo
19.
DNA Repair (Amst) ; 11(1): 65-73, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22071149

RESUMEN

Mutations within the human TREX1 3' exonuclease are associated with Aicardi-Goutières Syndrome (AGS) and familial chilblain lupus (FCL). Both AGS and FCL are autoimmune diseases that result in increased levels of interferon alpha and circulating antibodies to DNA. TREX1 is a member of the endoplasmic reticulum (ER)-associated SET complex and participates in granzyme A-mediated cell death to degrade nicked genomic DNA. The loss of TREX1 activity may result in the accumulation of double-stranded DNA (dsDNA) degradation intermediates that trigger autoimmune activation. The X-ray crystal structures of the TREX1 wt apoprotein, the dominant D200H, D200N and D18N homodimer mutants derived from AGS and FCL patients, as well as the recessive V201D homodimer mutant have been determined. The structures of the D200H and D200N mutant proteins reveal the enzyme has lost coordination of one of the active site metals, and the catalytic histidine (H195) is trapped in a conformation pointing away from the active site. The TREX1 D18N and V201D mutants are able to bind both metals in the active site, but with inter-metal distances that are larger than optimal for catalysis. Additionally, all of the mutant structures reveal a reduced mobility in the catalytic histidine, providing further explanation for the loss of catalytic activity. The structures of the mutant TREX1 proteins provide insight into the dysfunction relating to human disease. Additionally, the TREX1 apoprotein structure together with the previously determined wild type substrate and product structures allow us to propose a distinct mechanism for the TREX1 exonuclease.


Asunto(s)
Enfermedades Autoinmunes/enzimología , Enfermedades Autoinmunes/genética , Daño del ADN , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Mutación/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Animales , Apoproteínas/química , Apoproteínas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Humanos , Hidrólisis , Metales/metabolismo , Ratones , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ácidos Nucleicos/metabolismo , Estructura Secundaria de Proteína
20.
J Biol Chem ; 286(51): 43596-43600, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22069334

RESUMEN

The SAMHD1 protein is an HIV-1 restriction factor that is targeted by the HIV-2 accessory protein Vpx in myeloid lineage cells. Mutations in the SAMHD1 gene cause Aicardi-Goutières syndrome, a genetic disease that mimics congenital viral infection. To determine the physiological function of the SAMHD1 protein, the SAMHD1 gene was cloned, recombinant protein was produced, and the catalytic activity of the purified enzyme was identified. We show that SAMHD1 contains a dGTP-regulated deoxynucleotide triphosphohydrolase. We propose that Vpx targets SAMHD1 for degradation in a viral strategy to control cellular deoxynucleotide levels for efficient replication.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , VIH-1/genética , Proteínas de Unión al GTP Monoméricas/genética , Células Mieloides/citología , Malformaciones del Sistema Nervioso/genética , Proteínas Reguladoras y Accesorias Virales/metabolismo , Animales , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Catálisis , Bovinos , Nucleótidos de Desoxiguanina/química , Relación Dosis-Respuesta a Droga , VIH-1/metabolismo , Humanos , Ratones , Proteínas de Unión al GTP Monoméricas/química , Nucleósidos/química , Monoéster Fosfórico Hidrolasas/química , Proteína 1 que Contiene Dominios SAM y HD , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA