Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuropharmacology ; : 110055, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950692

RESUMEN

Sleep disturbances and persistent pain conditions are public health challenges worldwide. Although it is well-known that sleep deficit increases pain sensitivity, the underlying mechanisms remain elusive. We have recently demonstrated the involvement of nucleus accumbens (NAc) and anterior cingulate cortex (ACC) in the pronociceptive effect of sleep restriction. In this study, we found that sleep restriction increases c-Fos expression in NAc and ACC, suggesting hyperactivation of these regions during prolonged wakefulness in male Wistar rats. Blocking adenosine A2A receptors in the NAc or GABAA receptors in the ventral tegmental area (VTA), dorsal raphe nucleus (DRN), or locus coeruleus (LC) effectively mitigated the pronociceptive effect of sleep restriction. In contrast, the blockade of GABAA receptors in each of these nuclei only transiently reduced carrageenan-induced hyperalgesia. Pharmacological activation of dopamine D2, serotonin 5-HT1A and noradrenaline alpha-2 receptors within the ACC also prevented the pronociceptive effect of sleep restriction. While pharmacological inhibition of these same monoaminergic receptors in the ACC restored the pronociceptive effect which had been prevented by the GABAergic disinhibition of the of the VTA, DRN or LC. Overall, these findings suggest that the pronociceptive effect of sleep restriction relies on increased adenosinergic activity on NAc, heightened GABAergic activity in VTA, DRN, and LC, and reduced inhibitory monoaminergic activity on ACC. These findings advance our understanding of the interplay between sleep and pain, shedding light on potential NAc-brainstem-ACC mechanisms that could mediate increased pain sensitivity under conditions of sleep impairment.

2.
J Pain ; 25(2): 331-349, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37673193

RESUMEN

Persistent pain conditions and sleep disorders are public health problems worldwide. It is widely accepted that sleep disruption increases pain sensitivity; however, the underlying mechanisms are poorly understood. In this study, we used a protocol of 6 hours a day of total sleep deprivation for 3 days in rats to advance the understanding of these mechanisms. We focused on gender differences and the dopaminergic mesocorticolimbic system. The findings demonstrated that sleep restriction (SR) increased pain sensitivity in a similar way in males and females, without inducing a significant stress response. This pronociceptive effect depends on a nucleus accumbens (NAc) neuronal ensemble recruited during SR and on the integrity of the anterior cingulate cortex (ACC). Data on indirect dopaminergic parameters, dopamine transporter glycosylation, and dopamine and cyclic adenosine monophosphate (AMP)-regulated phosphoprotein-32 phosphorylation, as well as dopamine, serotonin, and norepinephrine levels, suggest that dopaminergic function decreases in the NAc and ACC after SR. Complementarily, pharmacological activation of dopamine D2, but not D1 receptors either in the ACC or in the NAc prevents SR from increasing pain sensitivity. The ACC and NAc are the main targets of dopaminergic mesocorticolimbic projections with a key role in pain modulation. This study showed their integrative role in the pronociceptive effect of SR, pointing to dopamine D2 receptors as a potential target for pain management in patients with sleep disorders. These findings narrow the focus of future studies on the mechanisms by which sleep impairment increases pain sensitivity. PERSPECTIVE: This study demonstrates that the pronociceptive effect of SR affects similarly males and females and depends on a NAc neuronal ensemble recruited during SR and on the integrity of the ACC. Findings on dopaminergic function support dopamine D2 receptors as targets for pain management in sleep disorders patients.


Asunto(s)
Dopamina , Núcleo Accumbens , Humanos , Masculino , Ratas , Animales , Núcleo Accumbens/fisiología , Dopamina/farmacología , Giro del Cíngulo , Dolor , Privación de Sueño/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA