Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 96(9): e0032122, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35412345

RESUMEN

Circular RNAs (circRNAs) are a recently rediscovered class of functional noncoding RNAs that are involved in gene regulation and cancer development. Next-generation sequencing approaches identified circRNA fragments and sequences underlying circularization events in virus-induced cancers. In the present study, we performed viral circRNA expression analysis and full-length sequencing in infections with Marek's disease virus (MDV), which serves as a model for herpesvirus-induced tumorigenesis. We established inverse PCRs to identify and characterize circRNA expression from the repeat regions of the MDV genome during viral replication, latency, and reactivation. We identified a large variety of viral circRNAs through precise mapping of full-length circular transcripts and detected matching sequences with several viral genes. Hot spots of circRNA expression included the transcriptional unit of the major viral oncogene encoding the Meq protein and the latency-associated transcripts (LATs). Moreover, we performed genome-wide bioinformatic analyses to extract back-splice junctions from lymphoma-derived samples. Using this strategy, we found that circRNAs were abundantly expressed in vivo from the same key virulence genes. Strikingly, the observed back-splice junctions do not follow a unique canonical pattern, compatible with the U2-dependent splicing machinery. Numerous noncanonical junctions were observed in viral circRNA sequences characterized from in vitro and in vivo infections. Given the importance of the genes involved in the transcription of these circRNAs, our study contributes to our understanding and complexity of this deadly pathogen. IMPORTANCE Circular RNAs (circRNAs) were rediscovered in recent years both in physiological and pathological contexts, such as in cancer. Viral circRNAs are encoded by at least two human herpesviruses, the Epstein Barr virus and the Kaposi's Sarcoma-associated herpesvirus, both associated with the development of lymphoma. Marek's disease virus (MDV) is a well-established animal model to study virus-induced lymphoma but circRNA expression has not been reported for MDV yet. Our study provided the first evidence of viral circRNAs that were expressed at key steps of the MDV lifecycle using genome-wide analyses of circRNAs. These circRNAs were primarily found in transcriptional units that corresponded to the major MDV virulence factors. In addition, we established a bioinformatics pipeline that offers a new tool to identify circular RNAs in other herpesviruses. This study on the circRNAs provided important insights into major MDV virulence genes and herpesviruses-mediated gene dysregulation.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Gallináceo 2 , Enfermedad de Marek , ARN Circular , Animales , Pollos , Estudio de Asociación del Genoma Completo , Herpesvirus Gallináceo 2/genética , Herpesvirus Gallináceo 2/patogenicidad , Linfoma/virología , Enfermedad de Marek/virología , Proteínas Oncogénicas Virales/genética , ARN Circular/genética , ARN no Traducido/genética , Virulencia/genética
2.
Microorganisms ; 9(6)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205549

RESUMEN

During latency, herpesvirus infection results in the establishment of a dormant state in which a restricted set of viral genes are expressed. Together with alterations of the viral genome, several host genes undergo epigenetic silencing during latency. These epigenetic dysregulations of cellular genes might be involved in the development of cancer. In this context, Gallid alphaherpesvirus 2 (GaHV-2), causing Marek's disease (MD) in susceptible chicken, was shown to impair the expression of several cellular microRNAs (miRNAs). We decided to focus on gga-miR-126, a host miRNA considered a tumor suppressor through signaling pathways controlling cell proliferation. Our objectives were to analyze the cause and the impact of miR-126 silencing during GaHV-2 infection. This cellular miRNA was found to be repressed at crucial steps of the viral infection. In order to determine whether miR-126 low expression level was associated with specific epigenetic signatures, DNA methylation patterns were established in the miR-126 gene promoter. Repression was associated with hypermethylation at a CpG island located in the miR-126 host gene epidermal growth factor like-7 (EGFL-7). A strategy was developed to conditionally overexpress miR-126 and control miRNAs in transformed CD4+ T cells propagated from Marek's disease (MD) lymphoma. This functional assay showed that miR-126 restoration specifically diminishes cell proliferation. We identified CT10 regulator of kinase (CRK), an adaptor protein dysregulated in several human malignancies, as a candidate target gene. Indeed, CRK protein levels were markedly reduced by the miR-126 restoration.

3.
Methods Protoc ; 3(3)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824827

RESUMEN

The emergence of the SARS-CoV-2 virus and the exponential growth of COVID-19 cases have created a major crisis for public health systems. The critical identification of contagious asymptomatic carriers requires the isolation of viral nucleic acids, reverse transcription, and amplification by PCR. However, the shortage of specific proprietary reagents or the lack of automated platforms have seriously hampered diagnostic throughput in many countries. Here, we provide a procedure for SARS-CoV-2 detection for diagnostic purposes from clinical samples in the setting of a basic research molecular biology lab. The procedure details the necessary steps for daily analysis of up to 500 clinical samples with a team composed of 12 experienced researchers. The protocol has been designed to rely on widely available reagents and devices, to cope with heterogeneous clinical specimens, to guarantee nucleic acid extraction from very scarce biological material, and to minimize the rate of false-negative results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA