Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Protein Expr Purif ; 174: 105660, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32473323

RESUMEN

Transcription factor IIH (TFIIH) plays essential roles in both the initiation of RNA Polymerase II-mediated transcription and the Nucleotide Excision Repair (NER) pathway in eukaryotes. In NER, the 7-subunit TFIIH Core sub-complex is responsible for the opening and extension of the DNA bubble created at the lesion site, utilizing the molecular motors XPB and XPD. Mutations in Core subunits are associated with a series of severe autosomal recessive disorders characterised by symptoms such as mild-to-extreme photosensitivity, premature ageing, physical and neurological anomalies, and in some cases an increased susceptibility to cancer. Although TFIIH Core has been successfully obtained in the past, the process has always remained challenging and laborious, involving many steps that severely hindered the amount of pure, active complex obtained. This has limited biochemical and functional studies of the NER process. Here we describe improved and simplified processes for the cloning, expression and purification of the 7-subunit TFIIH Core sub-complex. The combined use of auto-cleavable 2A-like sequences derived from the Foot-and-Mouth Disease Virus (FMDV) and the MultiBac™ cloning system, a powerful baculoviral expression vector specifically conceived for the obtaining of multi-subunit eukaryotic complexes, allowed us to obtain a single, 7-gene plasmid in a short time using regular restriction cloning strategies. Additionally, expression of the construct in High Five™ insect cells paired with a simple 5-step purification protocol allowed the extraction of a pure, active TFIIH Core sub-complex in milligram quantities.


Asunto(s)
Expresión Génica , Factor de Transcripción TFIIH , Animales , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Células Sf9 , Spodoptera , Factor de Transcripción TFIIH/biosíntesis , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/aislamiento & purificación
2.
Nucleic Acids Res ; 44(6): 2806-15, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26896802

RESUMEN

The xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5' to 3' helicase with an essential iron-sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase from Thermoplasma acidophilum has been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD from Sulfolobus acidocaldiarius that lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD.


Asunto(s)
Proteínas Arqueales/química , Reparación del ADN , ADN de Archaea/química , ADN de Cadena Simple/química , Thermoplasma/química , Proteína de la Xerodermia Pigmentosa del Grupo D/química , Secuencias de Aminoácidos , Proteínas Arqueales/antagonistas & inhibidores , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Daño del ADN , ADN de Archaea/genética , ADN de Archaea/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfolobus/química , Sulfolobus/enzimología , Thermoplasma/enzimología , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
3.
Nucleic Acids Res ; 44(2): 954-68, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26657627

RESUMEN

The complex molecular motions central to the functions of helicases have long attracted attention. Protein crystallography has provided transformative insights into these dynamic conformational changes, however important questions about the true nature of helicase configurations during the catalytic cycle remain. Using pulsed EPR (PELDOR or DEER) to measure interdomain distances in solution, we have examined two representative helicases: PcrA from superfamily 1 and XPD from superfamily 2. The data show that PcrA is a dynamic structure with domain movements that correlate with particular functional states, confirming and extending the information gleaned from crystal structures and other techniques. XPD in contrast is shown to be a rigid protein with almost no conformational changes resulting from nucleotide or DNA binding, which is well described by static crystal structures. Our results highlight the complimentary nature of PELDOR to crystallography and the power of its precision in understanding the conformational changes relevant to helicase function.


Asunto(s)
Proteínas Bacterianas/química , ADN Helicasas/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/química , ADN/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Geobacillus stearothermophilus/enzimología , Modelos Moleculares , Mutación , Nucleótidos/metabolismo , Estructura Terciaria de Proteína , Marcadores de Spin , Proteína de la Xerodermia Pigmentosa del Grupo D/química , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
4.
Biochem J ; 442(1): 77-84, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22166102

RESUMEN

DinG (damage inducible gene G) is a bacterial superfamily 2 helicase with 5'→3' polarity. DinG is related to the XPD (xeroderma pigmentosum complementation group D) helicase family, and they have in common an FeS (iron­sulfur)-binding domain that is essential for the helicase activity. In the bacilli and clostridia, the DinG helicase has become fused with an N-terminal domain that is predicted to be an exonuclease. In the present paper we show that the DinG protein from Staphylococcus aureus lacks an FeS domain and is not a DNA helicase, although it retains DNA-dependent ATP hydrolysis activity. Instead, the enzyme is an active 3'→5' exonuclease acting on single-stranded DNA and RNA substrates. The nuclease activity can be modulated by mutation of the ATP-binding cleft of the helicase domain, and is inhibited by ATP or ADP, suggesting a modified role for the inactive helicase domain in the control of the nuclease activity. By degrading rather than displacing RNA or DNA strands, the S. aureus DinG nuclease may accomplish the same function as the canonical DinG helicase.


Asunto(s)
Proteínas Bacterianas/genética , ADN Helicasas/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Staphylococcus aureus/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , ADN Helicasas/metabolismo , Staphylococcus aureus/metabolismo
5.
Biochem J ; 427(1): 49-55, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20082605

RESUMEN

Archaea use a variety of small basic proteins to package their DNA. One of the most widespread and highly conserved is the Alba (Sso10b) protein. Alba interacts with both DNA and RNA in vitro, and we show in the present study that it binds more tightly to dsDNA (double-stranded DNA) than to either ssDNA (single-stranded DNA) or RNA. The Alba protein is dimeric in solution, and forms distinct ordered complexes with DNA that have been visualized by electron microscopy studies; these studies suggest that, on binding dsDNA, the protein forms extended helical protein fibres. An end-to-end association of consecutive Alba dimers is suggested by the presence of a dimer-dimer interface in crystal structures of Alba from several species, and by the strong conservation of the interface residues, centred on Arg59 and Phe60. In the present study we map perturbation of the polypeptide backbone of Alba upon binding to DNA and RNA by NMR, and demonstrate the central role of Phe60 in forming the dimer-dimer interface. Site-directed spin labelling and pulsed ESR are used to confirm that an end-to-end, dimer-dimer interaction forms in the presence of dsDNA.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , ADN de Archaea/metabolismo , Proteínas de Unión al ADN/metabolismo , Ácidos Nucleicos/metabolismo , Proteínas Arqueales/genética , Western Blotting , Cromatina/genética , Cromatina/metabolismo , Cristalografía por Rayos X , ADN de Archaea/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Dimerización , Espectroscopía de Resonancia por Spin del Electrón , Ensayo de Cambio de Movilidad Electroforética , Mutagénesis Sitio-Dirigida , Mutación/genética , Ácidos Nucleicos/genética , Unión Proteica , Conformación Proteica
6.
Angew Chem Int Ed Engl ; 48(16): 2904-6, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19294709

RESUMEN

Distance fingerprinting: Pulsed electron-electron double resonance spectroscopy (PELDOR) is applied to the octameric membrane protein complex Wza of E. coli. The data yielded a detailed distance fingerprint of its periplasmic region that compares favorably to the crystal structure. These results provide the foundation to study conformation changes from interaction with partner proteins.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Sustitución de Aminoácidos , Simulación por Computador , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Mutantes/química , Periplasma/metabolismo , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA