Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Adv Sci (Weinh) ; : e2404728, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924310

RESUMEN

Gas marbles are a new family of particle-stabilized soft dispersed system with a soap bubble-like air-in-water-in-air structure. Herein, stimulus-responsive character is successfully introduced to a gas marble system for the first time using polymer particles carrying a poly(tertiary amine methacrylate) (pKa ≈7) steric stabilizer on their surfaces as a particulate stabilizer. The gas marbles exhibited long-term stability when transferred onto the planar surface of liquid water, provided that the solution pH of the subphase is basic and neutral. In contrast, the use of acidic solutions led to immediate disintegration of the gas marbles, resulting in release of the inner gas. The critical minimum solution pH required for long-term gas marble stability correlates closely with the known pKa value for the poly(tertiary amine methacrylate) stabilizer. It also demonstrates amphibious motions of the gas marbles.

2.
Chem Asian J ; 18(17): e202300404, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37440587

RESUMEN

Highly positively charged poly(vinyl benzyl trimethylammonium chloride) (PVBMA) was successfully synthesized with approximately 82% of yield. The PVBMA was characterized by the molecular weight (Mw ) of 343.45 g mol-1 and the molecular weight distribution, (D) of 2.4 by 1 H NMR and SEC measurements. The PVBMA was applied as an effective agent for α-Al2 O3 surface modification in the adsorptive removal of the azo dye acid orange G (AOG). The AOG removal performance was significantly enhanced at all pH compared to without surface modification. The experimental parameters were optimal at pH 8, free ionic strength, 15 min of adsorption time, and 5 mg mL-1 α-Al2 O3 adsorbents. The AOG adsorption which was mainly controlled by the PVBMA-AOG electrostatic attractions was better applicable to the Langmuir isotherm and the pseudo-second kinetic model. The PVBMA-modified α-Al2 O3 demonstrates a high-performance and highly reusable adsorbent with great AOG performances of approximately 90.1% after 6 reused cycles.

3.
Langmuir ; 39(23): 8120-8129, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37235722

RESUMEN

Cationic random copolymers (PCm) consisting of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC; P) with methacroylcholine chloride (MCC; C) and anionic random copolymers (PSn) consisting of MPC and potassium 3-(methacryloyloxy)propanesulfonate (MPS; S) were prepared via a reversible addition-fragmentation chain transfer method. "m" and "n" represent the compositions (mol %) of the MCC and MPS units in the copolymers, respectively. The degrees of polymerization for the copolymers were 93-99. Water-soluble MPC unit contains a pendant zwitterionic phosphorylcholine group whose charges are neutralized in pendant groups. MCC and MPS units contain the cationic quaternary ammonium and anionic sulfonate groups, respectively. The stoichiometrically charge-neutralized mixture of a matched pair of PCm and PSn aqueous solutions resulted in the spontaneous formation of water-soluble PCm/PSn polyion complex (PIC) micelles. These PIC micelles have the MPC-rich surface and MCC/MPS core. These PIC micelles were characterized using 1H NMR, dynamic and static light scattering, and transmission electron microscopic measurements. The hydrodynamic radius of these PIC micelles depends on the mixing ratio of the oppositely charged random copolymers. The charge-neutralized mixture formed maximum-size PIC micelles.

4.
ACS Omega ; 8(51): 49211-49217, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38162724

RESUMEN

Klebsiella pneumoniae, a member of the family Enterobacteriaceae, is a rod-shaped, Gram-negative bacterium, mainly found in the hospital environment and medical tools. It is the leading cause of nosocomial infection, characterized by bloodstream infection, wound site infection, urinary tract infection, and sepsis, mostly in older adults, newborn infants, and immunocompromised patients. This present study demonstrated a novel diagnostic method for K. pneumoniae detection based on the gold nanozyme activity for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. The nanozyme activity of AuNPs with staining enhancement was statistically three times higher than that of the bare AuNPs in solid absorption at 650 nm. Nano-ELISA with staining enhancement could detect as low as 102 CFUs/mL of K. pneumoniae concentration, as the cutoff value was determined to be 0.158, which boosted the sensitivity of the immunoreactions by up to 100-fold. The detection limit of our assays was 26.023 CFUs/mL, and the limit of quantification was 78.857 CFUs/mL. There was no cross-reaction against other bacteria, which proved the immunoassays' remarkable specificity for recognizing K. pneumoniae. Taken together, we successfully developed and optimized the highly sensitive and decently specific nano-ELISA strategy that might be applicable for detecting various other bacterial pathogens.

5.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956686

RESUMEN

Poly(4-((3-methacrylamidopropyl)dimethylammonium)butane-1-sulfonate) (PSBP) was prepared via controlled radical polymerization. PSBP showed upper critical solution temperature (UCST) behavior in aqueous solutions, which could be controlled by adjusting the polymer and NaCl concentrations. Owing to its pendant sulfonate anions, PSBP exhibited a negative zeta potential of -7.99 mV and formed a water-soluble ion complex with the cationic surfactant cetyltrimethylammonium bromide (CTAB) via attractive electrostatic interaction. A neutral PSBP/CTAB complex was formed under equimolar concentrations of the pendant sulfonate group in PSBP and the quaternary ammonium group in CTAB. Transmittance electron microscopic images revealed the spherical shape of the complex. The stoichiometrically neutral-charge PSBP/CTAB complex exhibited UCST behavior in aqueous solutions. Similar to PSBP, the phase transition temperature of the PSBP/CTAB complex could be tuned by modifying the polymer and NaCl concentrations. In 0.1 M aqueous solution, the PSBP/CTAB complex showed UCST behavior at a low complex concentration of 0.084 g/L, whereas PSBP did not exhibit UCST behavior at concentrations below 1.0 g/L. This observation suggests that the interaction between PSBP and CTAB in the complex was stronger than the interpolymer interaction of PSBP.

6.
Polymers (Basel) ; 14(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35566829

RESUMEN

A diblock copolymer (P(VBTAC/NaSS)17-b-PAPTAC50; P(VS)17A50) composed of amphoteric random copolymer, poly(vinylbenzyl trimethylammonium chloride-co-sodium p-styrensunfonate) (P(VBTAC/NaSS); P(VS)) and cationic poly(3-(acrylamidopropyl) trimethylammonium chloride) (PAPTAC; A) block, and poly(acrylic acid) (PAAc49) were prepared via a reversible addition-fragmentation chain transfer radical polymerization. Scrips V, S, and A represent VBTAC, NaSS, and PAPTAC blocks, respectively. Water-soluble polyion complex (PIC) vesicles were formed by mixing P(VS)17A50 and PAAc49 in water under basic conditions through electrostatic interactions between the cationic PAPTAC block and PAAc49 with the deprotonated pendant carboxylate anions. The PIC vesicle collapsed under an acidic medium because the pendant carboxylate anions in PAAc49 were protonated to delete the anionic charges. The PIC vesicle comprises an ionic PAPTAC/PAAc membrane coated with amphoteric random copolymer P(VS)17 shells. The PIC vesicle showed upper critical solution temperature (UCST) behavior in aqueous solutions because of the P(VS)17 shells. The pH- and thermo-responsive behavior of the PIC vesicle were studied using 1H NMR, static and dynamic light scattering, and percent transmittance measurements. When the ratio of the oppositely charged polymers in PAPTAC/PAAc was equal, the size and light scattering intensity of the PIC vesicle reached maximum values. The hydrophilic guest molecules can be encapsulated into the PIC vesicle at the base medium and released under acidic conditions. It is expected that the PIC vesicles will be applied as a smart drug delivery system.

7.
Langmuir ; 36(43): 13001-13011, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33090796

RESUMEN

The present study aims to investigate the adsorption of synthesized poly(2-acrylamide-2-methylpropane sulfonic acid) (PAMPs) onto alumina nanoparticles and their application in the removal of ciprofloxacin (CFX) antibiotic from a water environment. The PAMPs were successfully synthesized and characterized by nuclear magnetic resonance and gel-permeation chromatography methods. The number- and weight-average molecular weights of PAMPs were 6.76 × 105 and 7.28 × 106 g/mol, respectively. The charge reversal of nanoalumina after PAMPs modification from positive to -37.5 mV was determined by ζ-potential measurement, while the appearance of C ═ O and N-H functional groups in PAMPs observed by Fourier-transform infrared spectroscopy confirmed them as the main indicators for adsorption of PAMPs onto a nanoalumina surface. The maximum adsorption capacity of PAMPs onto nanoalumina in 100 mg/L KCl was about 10 mg/g. The adsorption isotherms were fitted well by a two-step adsorption model. Application of PAMPs-modified nanoalumina (PAMNA) in CFX removal was also thoroughly studied. The optimum conditions for CFX removal using PAMNA were found to be pH 6, 10 mM NaCl, contact time 90 min, and adsorption dosage 5 mg/mL. The CFX adsorption isotherms and kinetics were in accordance with the two-step and pseudo-second-order models, respectively. The application for CFX removal in actual hospital wastewater was greater than 80%. The results of this study demonstrate that PAMNA is a new and promising material for antibiotic removal from wastewater.

8.
Vet Res ; 51(1): 8, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32014061

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that contribute to host immune response as post-transcriptional regulation. The current study investigated the biological role of the chicken (Gallus gallus) microRNA-200a-3p (gga-miR-200a-3p), using 2 necrotic enteritis (NE) afflicted genetically disparate chicken lines, 6.3 and 7.2, as well as the mechanisms underlying the fundamental signaling pathways in chicken. The expression of gga-miR-200a-3p in the intestinal mucosal layer of NE-induced chickens, was found to be upregulated during NE infection in the disease-susceptible chicken line 7.2. To validate the target genes, we performed an overexpression analysis of gga-miR-200a-3p using chemically synthesized oligonucleotides identical to gga-miR-200a-3p, reporter gene analysis including luciferase reporter assay, and a dual fluorescence reporter assay in cultured HD11 chicken macrophage cell lines. Gga-miR-200a-3p was observed to be a direct transcriptional repressor of ZAK, MAP2K4, and TGFß2 that are involved in mitogen-activated protein kinase (MAPK) pathway by targeting the 3'-UTR of their transcripts. Besides, gga-miR-200a-3p may indirectly affect the expression of protein kinases including p38 and ERK1/2 at both transcriptional and translational levels, suggesting that this miRNA may function as an important regulator of the MAPK signaling pathway. Proinflammatory cytokines consisting of IL-1ß, IFN-γ, IL-12p40, IL-17A, and LITAF belonging to Th1 and Th17-type cytokines, were upregulated upon gga-miR-200a-3p overexpression. These findings have enhanced our knowledge of the immune function of gga-miR-200a-3p mediating the chicken immune response via regulation of the MAPK signaling pathway and indicate that this miRNA may serve as an important biomarker of diseases in domestic animals.


Asunto(s)
Pollos , Enteritis/veterinaria , Inmunidad Innata/genética , MicroARNs/inmunología , Necrosis/veterinaria , Enfermedades de las Aves de Corral/inmunología , Animales , Enteritis/genética , Enteritis/inmunología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/inmunología , Necrosis/genética , Necrosis/inmunología , Enfermedades de las Aves de Corral/genética , Transducción de Señal
9.
Dev Comp Immunol ; 102: 103472, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31437523

RESUMEN

miRNAs are involved in both adaptive and innate immune systems of host animals; and play important roles in many immune-related pathways. The systemic biological roles of gga-miR-10a-5p chicken microRNA on immune response were investigated in two necrotic enteritis (NE) induced chicken lines, Marek's disease (MD) resistant (line 6.3) and susceptible (line 7.2). We determined the expression patterns of gga-miR-10a in the intestinal mucosal layer of chickens upon NE induction, and identified the target genes (MyD88, and SKP1) related to the host immune response to pathogens. We found that gga-miR-10a expression in the intestinal mucosal layer of MD-resistant chicken line 6.3 gga-miR-10a was significantly down-regulated (p < 0.01) during NE. Overexpression analysis of gga-miR-10a and reporter gene analysis using a wild- or mutant-type MyD88 3' untranslated region (3' UTR)-luciferase construct in chicken macrophage cell line HD11 and chicken fibroblast cell line OU2 showed that gga-miR-10a acted as a direct translational repressor of MyD88 by targeting the 3' UTR of this gene. Furthermore, miR-10a indirectly negatively influenced the expression of signaling molecules related to the MyD88-dependent pathway, including TRAF6, TAK1, and NF-κB1 at both transcriptional and translational levels. Downstream of the MyD88-dependent pathway, several proinflammatory cytokines such as IL-1ß, IFN-γ, IL-12p40, TNFSF15, and LITAF were down-regulated by overexpression of gga-miR-10a. These results suggest that gga-miR-10a is an important regulator of the Toll-like receptor signaling pathway. The findings of this study improve our understanding of the biological functions of miR-10a and the mechanisms underlying the TLR signaling pathway upon NE afflicted chickens, as well improving the overall understanding of the immune system function in domestic animals.


Asunto(s)
Enteritis/veterinaria , Regulación de la Expresión Génica/inmunología , MicroARNs/metabolismo , Enfermedades de las Aves de Corral/inmunología , Regiones no Traducidas 3' , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Línea Celular , Pollos , Citocinas/metabolismo , Resistencia a la Enfermedad/genética , Enteritis/genética , Enteritis/inmunología , Enteritis/patología , Mucosa Intestinal/inmunología , MicroARNs/genética , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Necrosis , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/patología , Transducción de Señal/genética , Transducción de Señal/inmunología
10.
Poult Sci ; 98(12): 6989-7002, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31376355

RESUMEN

The inhibitory leukocyte immuno-globulin-like receptors (LILRBs) play an important role in innate immunity. Currently, no data exist regarding the role of LILRB4 and LILRB5 in the activation of immune signaling pathways in mammalian and avian species. Here, we report for the first time, the cloning and structural and functional analyses of chicken LILRB4-5 genes identified from 2 genetically disparate chicken lines. Comparison of LILRB4-5 amino acid sequences from lines 6.3 and 7.2 with those of mammalian proteins revealed 17 to 62% and 19 to 29% similarity, respectively. Phylogenetic analysis indicated that the chicken LILRB4-5 genes were closely associated with those of other species. LILRB4-5 could be subdivided into 2 groups having distinct immunoreceptor tyrosine-based inhibitory motifs, which bind to Src homology 2-containing tyrosine phosphatase 2 (SHP-2). Importantly, LILRB4-5 also upregulated the major histocompatibility complex (MHC) class I and ß2-microglobulin gene expression as well as the expression of transporter associated with antigen processing 1-2, which play an important role in MHC class I activation. Our results indicate that LILRB4-5 are transcriptional regulators of the MHC class I pathway components and regulate innate immune responses. Furthermore, LILRB4-5 could activate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway genes in macrophages and induce the expression of chemokines and T helper (Th)1, Th2, and Th17 cytokines. Our data suggest that LILRB4-5 are innate immune receptors associated with SHP-2, MHC class I, and ß2-microglobulin. Additionally, they activate the JAK/STAT signaling pathway and control the expression of cytokines in macrophages.


Asunto(s)
Antígenos CD/metabolismo , Pollos/genética , Variación Genética , Leucocitos/metabolismo , Receptores Inmunológicos/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos CD/genética , Pollos/metabolismo , Biología Computacional , Regulación de la Expresión Génica , Quinasas Janus/genética , Quinasas Janus/metabolismo , Complejo Mayor de Histocompatibilidad/genética , Filogenia , Unión Proteica , Receptores Inmunológicos/genética , Factores de Transcripción STAT , Transducción de Señal , Regulación hacia Arriba , Microglobulina beta-2/metabolismo
11.
Mol Ther ; 16(5): 931-41, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18388926

RESUMEN

Understanding host responses to viral gene therapy vectors is necessary for the development of safe and efficacious in vivo gene transfer agents. We describe the use of high-density spotted complementary DNA microarrays in monitoring the in vivo host transcriptional responses in mouse liver upon administration of either a "first-generation"adenoviral (Ad) vector, a helper-dependent "gutless" adenoviral (HD) vector, or an adeno-associated viral (AAV) vector containing human factor IX (hFIX) expression cassettes. Since HD and AAV do not contain any viral genes, they allow us to assess the host response to the viral capsid and packaged nonviral DNA in whole animals. Comparison of the host response to Ad and HD helps assess the importance of leaky adenoviral gene expression. While all three vectors induced characteristic temporally sequenced programs of gene expression, the gene expression programs induced by the Ad and HD adenovirus vectors were remarkably similar, including the induction of a prominent type I interferon (IFN)-dependent cluster within 6 hours of administration. In contrast, the AAV-based vector caused far fewer alterations of host-gene expression. Our results indicate that recognition of the Ad capsid or double-stranded DNA (of nonviral origin) in the vector elicits a robust type I IFN response that is, however, not elicited by AAV-derived vector transduction.


Asunto(s)
Adenoviridae/genética , Dependovirus/genética , Técnicas de Transferencia de Gen , Virus Helper/genética , Hígado/metabolismo , Animales , Presentación de Antígeno , Cápside/metabolismo , Factor IX/genética , Regulación de la Expresión Génica , Vectores Genéticos , Humanos , Interferón Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal
12.
Cell Microbiol ; 8(1): 120-9, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16367871

RESUMEN

In Escherichia coli the gene htrB codes for an acyltransferase that catalyses the incorporation of laurate into lipopolysaccharide (LPS) as a lipid A substituent. We describe the cloning, expression and characterization of a Porphyromonas gingivalis htrB homologue. When the htrB homologue was expressed in wild-type E. coli or a mutant strain deficient in htrB, a chimeric LPS with altered lipid A structure was produced. Compared with wild-type E. coli lipid A, the new lipid A species contained a palmitate (C16) in the position normally occupied by laurate (C12) suggesting that the cloned gene performs the same function as E. coli htrB but preferentially transfers the longer-chain palmitic acid that is known to be present in P. gingivalis LPS. LPS was purified from wild-type E. coli, the E. coli htrB mutant strain and the htrB mutant strain expressing the P. gingivalis acyltransferase. LPS from the palmitate bearing chimeric LPS as well as the htrB mutant exhibited a reduced ability to activate human embryonic kidney 293 (HEK293) cells transfected with TLR4/MD2. LPS from the htrB mutant also had a greatly reduced ability to stimulate interleukin-8 (IL-8) secretion in both endothelial cells and monocytes. In contrast, the activity of LPS from the htrB mutant bacteria expressing the P. gingivalis gene displayed wild-type activity to stimulate IL-8 production from endothelial cells but a reduced ability to stimulate IL-8 secretion from monocytes. The intermediate activation observed in monocytes for the chimeric LPS was similar to the pattern seen in HEK293 cells expressing TLR4/MD2 and CD14. Thus, the presence of a longer-chain fatty acid on E. coli lipid A altered the activity of the LPS in monocytes but not endothelial cell assays and the difference in recognition does not appear to be related to differences in Toll-like receptor utilization.


Asunto(s)
Aciltransferasas/metabolismo , Escherichia coli/enzimología , Interleucina-8/metabolismo , Lípido A/biosíntesis , Palmitatos/metabolismo , Porphyromonas gingivalis/enzimología , Aciltransferasas/genética , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Proteínas de Escherichia coli/genética , Humanos , Lauratos/metabolismo , Lípido A/aislamiento & purificación , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
13.
J Immunol ; 175(7): 4490-8, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16177092

RESUMEN

We have demonstrated previously that tetra-acylated LPS derived from the oral bacterium, Porphyromonas gingivalis, and penta-acylated msbB LPS derived from a mutant strain of Escherichia coli can antagonize the ability of canonical hexa-acylated E. coli LPS to signal through the TLR4 signaling complex in human endothelial cells. Activation of the TLR4 signaling complex requires the coordinated function of LPS binding protein (LBP), CD14, MD-2, and TLR4. To elucidate the specific molecular components that mediate antagonism, we developed a recombinant human TLR4 signaling complex that displayed efficient LPS-dependent antagonism of E. coli LPS in HEK293 cells. Notably, changes in the expression levels of TLR4 in HEK293 cells modulated the efficiency of antagonism by P. gingivalis LPS. Both soluble (s) CD14 and membrane (m) CD14 supported efficient P. gingivalis LPS-dependent and msbB LPS-dependent antagonism of E. coli LPS in the recombinant TLR4 system. When cells expressing TLR4, MD-2, and mCD14 were exposed to LPS in the absence of serum-derived LBP, efficient LPS-dependent antagonism of E. coli LPS was still observed indicating that LPS-dependent antagonism occurs downstream of LBP. Experiments using immunoprecipitates of sCD14 or sMD-2 that had been pre-exposed to agonist and antagonist indicated that LPS-dependent antagonism occurs partially at sCD14 and potently at sMD-2. This study provides novel evidence that expression levels of TLR4 can modulate the efficiency of LPS-dependent antagonism. However, MD-2 represents the principal molecular component that tetra-acylated P. gingivalis LPS and penta-acylated msbB LPS use to antagonize hexa-acylated E. coli LPS at the TLR4 signaling complex.


Asunto(s)
Escherichia coli/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/metabolismo , Transducción de Señal/fisiología , Acilación , Empalme Alternativo , Línea Celular , Variación Genética , Humanos , Receptores de Lipopolisacáridos/fisiología , Porphyromonas gingivalis/metabolismo , Isoformas de Proteínas
14.
Infect Immun ; 72(9): 5041-51, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15321997

RESUMEN

The innate host response to lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis is unusual in that different studies have reported that it can be an agonist for Toll-like receptor 2 (TLR2) as well as an antagonist or agonist for TLR4. In this report it is shown that P. gingivalis LPS is highly heterogeneous, containing more lipid A species than previously described. In addition, purification of LPS can preferentially fractionate these lipid A species. It is shown that an LPS preparation enriched for lipid A species at m/z 1,435 and 1,450 activates human and mouse TLR2, TLR2 plus TLR1, and TLR4 in transiently transfected HEK 293 cells coexpressing membrane-associated CD14. The HEK cell experiments further demonstrated that cofactor MD-2 was required for functional engagement of TLR4 but not of TLR2 nor TLR2 plus TLR1. In addition, serum-soluble CD14 effectively transferred P. gingivalis LPS to TLR2 plus TLR1, but poorly to TLR4. Importantly, bone marrow cells obtained from TLR2(-/-) and TLR4(-/-) mice also responded to P. gingivalis LPS in a manor consistent with the HEK results, demonstrating that P. gingivalis LPS can utilize both TLR2 and TLR4. No response was observed from bone marrow cells obtained from TLR2 and TLR4 double-knockout mice, demonstrating that P. gingivalis LPS activation occurred exclusively through either TLR2 or TLR4. Although the biological significance of the different lipid A species found in P. gingivalis LPS preparations is not currently understood, it is proposed that the presence of multiple lipid A species contributes to cell activation through both TLR2 and TLR4.


Asunto(s)
Lípido A/metabolismo , Lipopolisacáridos/química , Glicoproteínas de Membrana/metabolismo , Porphyromonas gingivalis/patogenicidad , Receptores de Superficie Celular/metabolismo , Animales , Células de la Médula Ósea , Línea Celular , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Porphyromonas gingivalis/química , Porphyromonas gingivalis/metabolismo , Receptores de Superficie Celular/genética , Receptor Toll-Like 1 , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Receptores Toll-Like
15.
Nature ; 418(6893): 38-9, 2002 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-12097900

RESUMEN

RNA interference is an evolutionarily conserved surveillance mechanism that responds to double-stranded RNA by sequence-specific silencing of homologous genes. Here we show that transgene expression can be suppressed in adult mice by synthetic small interfering RNAs and by small-hairpin RNAs transcribed in vivo from DNA templates. We also show the therapeutic potential of this technique by demonstrating effective targeting of a sequence from hepatitis C virus by RNA interference in vivo.


Asunto(s)
Envejecimiento/genética , Silenciador del Gen , Hepacivirus/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Animales , Genes Reporteros/genética , Humanos , Hígado/metabolismo , Luciferasas/biosíntesis , Luciferasas/genética , Ratones , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Interferente Pequeño , ARN no Traducido/química , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Especificidad por Sustrato , Transgenes/genética , Proteínas no Estructurales Virales/biosíntesis , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA