RESUMEN
Identifying spatially variable genes (SVGs) is a key step in the analysis of spatially resolved transcriptomics data. SVGs provide biological insights by defining transcriptomic differences within tissues, which was previously unachievable using RNA-sequencing technologies. However, the increasing number of published tools designed to define SVG sets currently lack benchmarking methods to accurately assess performance. This study compares results of 6 purpose-built packages for SVG identification across 9 public and 5 simulated datasets and highlights discrepancies between results. Additional tools for generation of simulated data and development of benchmarking methods are required to improve methods for identifying SVGs.
Asunto(s)
Benchmarking , Transcriptoma , Perfilación de la Expresión GénicaRESUMEN
Vγ9Vδ2 T cells are the largest population of γδ T cells in adults and can play important roles in providing effective immunity against cancer and infection. Many studies have suggested that peripheral Vγ9Vδ2 T cells are derived from the fetal liver and thymus and that the postnatal thymus plays little role in the development of these cells. More recent evidence suggested that these cells may also develop postnatally in the thymus. Here, we used high-dimensional flow cytometry, transcriptomic analysis, functional assays, and precursor-product experiments to define the development pathway of Vγ9Vδ2 T cells in the postnatal thymus. We identify three distinct stages of development for Vγ9Vδ2 T cells in the postnatal thymus that are defined by the progressive acquisition of functional potential and major changes in the expression of transcription factors, chemokines, and other surface markers. Furthermore, our analysis of donor-matched thymus and blood revealed that the molecular requirements for the development of functional Vγ9Vδ2 T cells are delivered predominantly by the postnatal thymus and not in the periphery. Tbet and Eomes, which are required for IFN-γ and TNFα expression, are up-regulated as Vγ9Vδ2 T cells mature in the thymus, and mature thymic Vγ9Vδ2 T cells rapidly express high levels of these cytokines after stimulation. Similarly, the postnatal thymus programs Vγ9Vδ2 T cells to express the cytolytic molecules, perforin, granzyme A, and granzyme K. This study provides a greater understanding of how Vγ9Vδ2 T cells develop in humans and may lead to opportunities to manipulate these cells to treat human diseases.
Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta , Subgrupos de Linfocitos T , Adulto , Humanos , Timo , Perfilación de la Expresión GénicaRESUMEN
Age can profoundly affect susceptibility to a broad range of human diseases. Children are more susceptible to some infectious diseases such as diphtheria and pertussis, while in others, such as coronavirus disease 2019 and hepatitis A, they are more protected compared with adults. One explanation is that the composition of the immune system is a major contributing factor to disease susceptibility and severity. While most studies of the human immune system have focused on adults, how the immune system changes after birth remains poorly understood. Here, using high-dimensional spectral flow cytometry and computational methods for data integration, we analyzed more than 50 populations of immune cells in the peripheral blood, generating an immune cell atlas that defines the healthy human immune system from birth up to 75 years of age. We focused our efforts on children under 18 years old, revealing major changes in immune cell populations after birth and in children of schooling age. Specifically, CD4+ T effector memory cells, Vδ2+ gamma delta (γδ)T cells, memory B cells, plasmablasts, CD11c+ B cells and CD16+ CD56bright natural killer (NK) cells peaked in children aged 5-9 years old, whereas frequencies of T helper 1, T helper 17, dendritic cells and CD16+ CD57+ CD56dim NK cells were highest in older children (10-18 years old). The frequency of mucosal-associated invariant T cells was low in the first several years of life and highest in adults between 19 and 30 years old. Late adulthood was associated with fewer mucosal-associated invariant T cells and Vδ2+ γδ T cells but with increased frequencies of memory subsets of B cells, CD4+ and CD8+ T cells and CD57+ NK cells. This human immune cell atlas provides a critical resource to understand changes to the immune system during life and provides a reference for investigating the immune system in the context of human disease. This work may also help guide future therapies that target specific populations of immune cells to protect at-risk populations.
Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Adulto , Niño , Humanos , Adolescente , Preescolar , Adulto Joven , Longevidad , Células Asesinas Naturales , Citometría de FlujoRESUMEN
Duchenne muscular dystrophy involves an absence of dystrophin, a cytoskeletal protein which supports cell structural integrity and scaffolding for signalling molecules in myocytes. Affected individuals experience progressive muscle degeneration that leads to irreversible loss of ambulation and respiratory diaphragm function. Although clinical management has greatly advanced, heart failure due to myocardial cell loss and fibrosis remains the major cause of death. We examined cardiac morphology and function in D2.B10-Dmd mdx /J (D2-mdx) mice, a relatively new mouse model of muscular dystrophy, which we compared to their wild-type background DBA/2J mice (DBA/2). We also tested whether drug treatment with a specific blocker of mitochondrial permeability transition pore opening (Debio-025), or ACE inhibition (Perindopril), had any effect on dystrophy-related cardiomyopathy. D2-mdx mice were treated for six weeks with Vehicle control, Debio-025 (20 mg/kg/day), Perindopril (2 mg/kg/day), or a combination (n = 8/group). At 18 weeks, compared to DBA/2, D2-mdx hearts displayed greater ventricular collagen, lower cell density, greater cell diameter, and greater protein expression levels of IL-6, TLR4, BAX/Bcl2, caspase-3, PGC-1α, and notably monoamine oxidases A and B. Remarkably, these adaptations in D2-mdx mice were associated with preserved resting left ventricular function similar to DBA/2 mice. Compared to vehicle, although Perindopril partly attenuated the increase in heart weight and collagen at 18 weeks, the drug treatments had no marked impact on dystrophic cardiomyopathy.
Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Animales , Cardiomiopatías/metabolismo , Distrofina , Fibrosis , Ratones , Ratones Endogámicos DBA , Ratones Endogámicos mdx , Miocitos Cardíacos/metabolismo , Función Ventricular IzquierdaRESUMEN
To produce an in vitro model of nemaline myopathy, we reprogrammed the peripheral blood mononuclear cells (PBMCs) of a patient with a heterozygous p.Gly148Asp mutation in exon 3 of the ACTA1 gene to iPSCs. Using CRISPR/Cas9 gene editing we corrected the mutation to generate an isogenic control line. Both the mutant and control show a normal karyotype, express pluripotency markers and could differentiae into the three cell states that represent embryonic germ layers (endoderm, mesoderm and neuroectoderm) and the dermomyotome (precursor of skeletal muscle). When differentiated these cell lines will be used to explore disease mechanisms and evaluate novel therapeutics.
Asunto(s)
Células Madre Pluripotentes Inducidas , Miopatías Nemalínicas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Humanos , Leucocitos Mononucleares , Mutación , Miopatías Nemalínicas/genéticaRESUMEN
BACKGROUND: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. METHODS: Single-nucleus RNA sequencing of 54 140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA sequencing and the Assay for Transposase-Accessible Chromatin using sequencing were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. RESULTS: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate that the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. CONCLUSIONS: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.
Asunto(s)
Corazón/fisiopatología , Receptores de Progesterona/metabolismo , Femenino , Humanos , Masculino , Factores SexualesRESUMEN
Duchenne muscular dystrophy (DMD) is a lethal muscle wasting disorder caused by mutations in the DMD gene that leads to the absence or severe reduction of dystrophin protein in muscle. The mdx mouse, also dystrophin deficient, is the model most widely used to study the pathology and test potential therapies, but the phenotype is milder than human DMD. This limits the magnitude and range of histological damage parameters and molecular changes that can be measured in pre-clinical drug testing. We used 3 weeks of voluntary wheel running to exacerbate the mdx phenotype. In mdx mice, voluntary exercise increased the amount of damaged necrotic tissue and macrophage infiltration. Global gene expression profiling revealed that exercise induced additional and larger gene expression changes in mdx mice and the pathways most impacted by exercise were all related to immune function or cell-extracellular matrix (ECM) interactions. When we compared the matrisome and inflammation genes that were dysregulated in mdx with those commonly differentially expressed in DMD, we found the exercised mdx molecular signature more closely resembled that of DMD. These gene expression changes in the exercised mdx model thus provide more scope to assess the effects of pre-clinical treatments. Our gene profiling comparisons also highlighted upregulation of ECM proteins involved in innate immunity pathways, proteases that can release them, downstream receptors and signaling molecules in exercised mdx and DMD, suggesting that the ECM could be a major source of pro-inflammatory molecules that trigger and maintain the immune response in dystrophic muscle.