Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neuron ; 111(23): 3745-3764.e7, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37776854

RESUMEN

Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.


Asunto(s)
Aracnoides , Meninges , Ratones , Animales , Aracnoides/anatomía & histología , Piamadre , Plexo Coroideo , Encéfalo
2.
Dev Cell ; 57(20): 2426-2443.e6, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36283392

RESUMEN

Smooth muscle cells (SMCs) execute important physiological functions in numerous vital organ systems, including the vascular, gastrointestinal, respiratory, and urogenital tracts. SMC differ morphologically and functionally at these different anatomical locations, but the molecular underpinnings of the differences remain poorly understood. Here, using deep single-cell RNA sequencing combined with in situ gene and protein expression analysis in four murine organs-heart, aorta, lung, and colon-we identify a molecular basis for high-level differences among vascular, visceral, and airway SMC, as well as more subtle differences between, for example, SMC in elastic and muscular arteries and zonation of elastic artery SMC along the direction of blood flow. Arterial SMC exhibit extensive organotypic heterogeneity, whereas venous SMC are similar across organs. We further identify a specific SMC subtype within the pulmonary vasculature. This comparative SMC cross-organ resource offers insight into SMC subtypes and their specific functions.


Asunto(s)
Músculo Liso Vascular , Transcriptoma , Ratones , Animales , Músculo Liso Vascular/metabolismo , Transcriptoma/genética , Miocitos del Músculo Liso/metabolismo , Aorta , Células Cultivadas
3.
Stem Cell Reports ; 17(5): 1089-1104, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35452595

RESUMEN

Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Pericitos , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/complicaciones , Enfermedades Cardiovasculares/virología , Células Endoteliales , Ratones , Pericitos/metabolismo , SARS-CoV-2
4.
EMBO Rep ; 22(2): e50218, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33369848

RESUMEN

Cell signalling governs cellular behaviour and is therefore subject to tight spatiotemporal regulation. Signalling output is modulated by specialized cell membranes and vesicles which contain unique combinations of lipids and proteins. The phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ), an important component of the plasma membrane as well as other subcellular membranes, is involved in multiple processes, including signalling. However, which enzymes control the turnover of non-plasma membrane PI(4,5)P2 , and their impact on cell signalling and function at the organismal level are unknown. Here, we identify Paladin as a vascular PI(4,5)P2 phosphatase regulating VEGFR2 endosomal signalling and angiogenesis. Paladin is localized to endosomal and Golgi compartments and interacts with vascular endothelial growth factor receptor 2 (VEGFR2) in vitro and in vivo. Loss of Paladin results in increased internalization of VEGFR2, over-activation of extracellular regulated kinase 1/2, and hypersprouting of endothelial cells in the developing retina of mice. These findings suggest that inhibition of Paladin, or other endosomal PI(4,5)P2 phosphatases, could be exploited to modulate VEGFR2 signalling and angiogenesis, when direct and full inhibition of the receptor is undesirable.


Asunto(s)
Neovascularización Fisiológica , Fosfoinosítido Fosfatasas , Fosfoproteínas Fosfatasas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Células Endoteliales/metabolismo , Ratones , Fosfatidilinositol 4,5-Difosfato , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Cancer Res ; 81(1): 129-143, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33037065

RESUMEN

Angiopoietin-2 (ANGPT2) is a context-dependent TIE2 agonistic or antagonistic ligand that induces diverse responses in cancer. Blocking ANGPT2 provides a promising strategy for inhibiting tumor growth and metastasis, yet variable effects of targeting ANGPT2 have complicated drug development. ANGPT2443 is a naturally occurring, lower oligomeric protein isoform whose expression is increased in cancer. Here, we use a knock-in mouse line (mice expressing Angpt2443), a genetic model for breast cancer and metastasis (MMTV-PyMT), a syngeneic melanoma lung colonization model (B16F10), and orthotopic injection of E0771 breast cancer cells to show that alternative forms increase the diversity of Angpt2 function. In a mouse retina model of angiogenesis, expression of Angpt2443 caused impaired venous development, suggesting enhanced function as a competitive antagonist for Tie2. In mammary gland tumor models, Angpt2443 differentially affected primary tumor growth and vascularization; these varying effects were associated with Angpt2 protein localization in the endothelium or in the stromal extracellular matrix as well as the frequency of Tie2-positive tumor blood vessels. In the presence of metastatic cells, Angpt2443 promoted destabilization of pulmonary vasculature and lung metastasis. In vitro, ANGPT2443 was susceptible to proteolytical cleavage, resulting in a monomeric ligand (ANGPT2DAP) that inhibited ANGPT1- or ANGPT4-induced TIE2 activation but did not bind to alternative ANGPT2 receptor α5ß1 integrin. Collectively, these data reveal novel roles for the ANGPT2 N-terminal domain in blood vessel remodeling, tumor growth, metastasis, integrin binding, and proteolytic regulation. SIGNIFICANCE: This study identifies the role of the N-terminal oligomerization domain of angiopoietin-2 in vascular remodeling and lung metastasis and provides new insights into mechanisms underlying the versatile functions of angiopoietin-2 in cancer.See related commentary by Kamiyama and Augustin, p. 35.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Angiopoyetina 1 , Angiopoyetina 2/genética , Angiopoyetinas , Animales , Neoplasias Pulmonares/genética , Ratones , Neovascularización Patológica/genética , Remodelación Vascular
6.
Acta Odontol Scand ; 75(6): 402-406, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28502207

RESUMEN

OBJECTIVE: The aim of this study was to investigate the relation between orthognathic patients' self-reported symptoms in the head and neck region and their quality of life (QoL). MATERIAL AND METHODS: Participants included were consecutive patients (n = 50) referred to the assessment of orthognathic treatment need and voluntary first-year university students (n = 29). All participants filled in the Orthognathic Quality of Life Questionnaire (OQLQ) and a structured diary created by the authors. The median values of Orthognathic Quality of Life (OQOL) sum and subscores, satisfaction with oral function and number of awakenings were compared between patients and controls. Further, correlations between the OQOL sum and subscores, satisfaction with oral function and number of awakenings were analyzed. RESULTS: Patients reported significantly more symptoms (p = .013) and woke up significantly more often than the controls (p = .032). Their OQOL sum scores were significantly higher (indicating a lower OQOL) (p = .001), and they were significantly less satisfied with their oral function than the controls (p < .001). Among the awakened and not-rested patients, the most commonly reported symptoms were pain in the head and/or neck region and fatigue and/or stiffness in the jaws. CONCLUSIONS: Experiences of pain and discomfort have a significant impact on patients' OQOL and well-being.


Asunto(s)
Deformidades Dentofaciales/psicología , Procedimientos Quirúrgicos Ortognáticos/psicología , Calidad de Vida/psicología , Autoimagen , Autoinforme , Adaptación Psicológica , Adulto , Estudios de Casos y Controles , Deformidades Dentofaciales/cirugía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Sistema Estomatognático/fisiopatología , Encuestas y Cuestionarios
7.
Hum Mol Genet ; 24(22): 6374-89, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26319232

RESUMEN

Venous malformations (VMs) are localized defects in vascular morphogenesis frequently caused by mutations in the gene for the endothelial tyrosine kinase receptor TIE2. Here, we report the analysis of a comprehensive collection of 22 TIE2 mutations identified in patients with VM, either as single amino acid substitutions or as double-mutations on the same allele. Using endothelial cell (EC) cultures, mouse models and ultrastructural analysis of tissue biopsies from patients, we demonstrate common as well as mutation-specific cellular and molecular features, on the basis of which mutations cluster into categories that correlate with data from genetic studies. Comparisons of double-mutants with their constituent single-mutant forms identified the pathogenic contributions of individual changes, and their compound effects. We find that defective receptor trafficking and subcellular localization of different TIE2 mutant forms occur via a variety of mechanisms, resulting in attenuated response to ligand. We also demonstrate, for the first time, that TIE2 mutations cause chronic activation of the MAPK pathway resulting in loss of normal EC monolayer due to extracellular matrix (ECM) fibronectin deficiency and leading to upregulation of plasminogen/plasmin proteolytic pathway. Corresponding EC and ECM irregularities are observed in affected tissues from mouse models and patients. Importantly, an imbalance between plasminogen activators versus inhibitors would also account for high d-dimer levels, a major feature of unknown cause that distinguishes VMs from other vascular anomalies.


Asunto(s)
Receptor TIE-2/genética , Malformaciones Vasculares/genética , Sustitución de Aminoácidos , Animales , Movimiento Celular/genética , Células Endoteliales/metabolismo , Femenino , Productos de Degradación de Fibrina-Fibrinógeno , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ligandos , Ratones , Ratones SCID , Mutación , Fosforilación , Receptor TIE-2/metabolismo , Transducción de Señal , Esferoides Celulares , Malformaciones Vasculares/enzimología
8.
J Cell Sci ; 125(Pt 9): 2212-23, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22357955

RESUMEN

Angiopoietin 1 (Ang1) is an activating ligand for the endothelial receptor tyrosine kinase Tie2, whereas Ang2 acts as a context-dependent agonist or antagonist that has a destabilizing effect on the vasculature. The molecular mechanisms responsible for the versatile functions of Ang2 are poorly understood. We show here that Ang2, but not Ang1, induces Tie2 translocation to the specific cell-matrix contact sites located at the distal end of focal adhesions. The Ang2-specific Tie2 translocation was associated with distinct Tie2 activation and downstream signals which differed from those of Ang1, and led to impaired cell motility and weak cell-matrix adhesion. We demonstrate that the different oligomeric or multimeric forms of the angiopoietins induce distinct patterns of Tie2 trafficking; the lower oligomerization state of native Ang2 was crucial for the Ang2-specific Tie2 redistribution, whereas multimeric structures of Ang1 and Ang2 induced similar responses. The Ang2-specific Tie2 trafficking to cell-matrix contacts was also dependent on the cell substratum, α2ß1-integrin-containing cell-matrix adhesion sites and intact microtubules. Our data indicate that the different subcellular trafficking of Tie2-Ang2 and Tie2-Ang1 complexes generates ligand-specific responses in the angiopoietin-Tie signaling pathway, including modulation of cell-matrix interactions.


Asunto(s)
Angiopoyetina 1/química , Angiopoyetina 2/química , Endotelio Vascular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Cuerpo Vítreo/irrigación sanguínea , Angiopoyetina 1/genética , Angiopoyetina 1/farmacología , Angiopoyetina 2/genética , Angiopoyetina 2/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Uniones Célula-Matriz/efectos de los fármacos , Uniones Célula-Matriz/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Integrina alfa2beta1/genética , Integrina alfa2beta1/metabolismo , Inyecciones Intravítreas , Ratones , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Células 3T3 NIH , Neovascularización Fisiológica , Multimerización de Proteína , Proteínas Tirosina Quinasas Receptoras/genética , Receptor TIE-2 , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA