Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FEBS J ; 289(4): 1105-1117, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34679218

RESUMEN

The autosomal dominant striated muscle disease myoglobinopathy is due to the single point mutation His98Tyr in human myoglobin (MB), the heme protein responsible for binding, storage, and controlled release of O2 in striated muscle. In order to understand the molecular basis of this disease, a comprehensive biochemical and biophysical study on wt MB and the variant H98Y has been performed. Although only small differences exist between the active site architectures of the two proteins, the mutant (a) exhibits an increased reactivity toward hydrogen peroxide, (b) exhibits a higher tendency to form high-molecular-weight aggregates, and (c) is more prone to heme bleaching, possibly as a consequence of the observed H2 O2 -induced formation of the Tyr98 radical close to the metal center. These effects add to the impaired oxygen binding capacity and faster heme dissociation of the H98Y variant compared with wt MB. As the above effects result from bond formation/cleavage events occurring at the distal and proximal heme sites, it appears that the molecular determinants of the disease are localized there. These findings set the basis for clarifying the onset of the cascade of chemical events that are responsible for the pathological symptoms of myoglobinopathy.


Asunto(s)
Histidina/genética , Enfermedades Musculares/genética , Mioglobina/genética , Histidina/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Modelos Moleculares , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Mutación , Mioglobina/metabolismo , Conformación Proteica
2.
Data Brief ; 33: 106345, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33024804

RESUMEN

The reported data are related to a research paper entitled "Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation" [1]. Info about the formation and redox properties of the disulfide bridge of a protein is quite difficult to obtain and only in a few cases was it possible to observe a cyclic voltammetry (CV) signal [2,3]. Human cofilin-2 contains two cysteines (Cys39 and Cys80) which can be oxidized in suitable conditions and form a disulfide bridge [1]. For this purpose, CV measurements were carried out on human cofilin-2 WT and its mutant S3D immobilized on a gold electrode coated by an anionic self-assembled monolayer (SAM), after a pre-oxidation time which was fundamental for observing a CV signal relating to the oxidation/reduction process of the disulfide bridge of the proteins. The data include CV curves obtained with and without electrochemical pre-oxidation and after oxidation with H2O2. In addition, the plot of the cathodic peak current vs. electrochemical pre-oxidation time and the pH dependence of the formal potential (E°') are reported. The data obtained by CV measurements were used to determine the time required to form the disulfide bridge for the immobilized proteins and, consequently, to observe the CV signal, to calculate the E°' values and analyse the pH dependence of E°'. The electrochemical data were provided which will be useful for further electrochemical investigations regarding proteins bearing disulfide bridge(s) or cysteines prone to oxidation.

3.
Redox Biol ; 37: 101691, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32863228

RESUMEN

Cofilins are small protein of the actin depolymerizing family. Actin polymerization/depolymerization is central to a number of critical cellular physiological tasks making cofilin a key protein for several physiological functions of the cell. Cofilin activity is mainly regulated by phosphorylation on serine residue 3 making this post-translational modification key to the regulation of myofilament integrity. In fact, in this form, the protein segregates in myocardial aggregates in human idiopathic dilated cardiomyopathy. Since myofilament network is an early target of oxidative stress we investigated the molecular changes induced by oxidation on cofilin isoforms and their interplay with the protein phosphorylation state to get insight on whether/how those changes may predispose to early protein aggregation. Using different and complementary approaches we characterized the aggregation properties of cofilin-2 and its phosphomimetic variant (S3D) in response to oxidative stress in silico, in vitro and on isolated cardiomyocytes. We found that the phosphorylated (inactive) form of cofilin-2 is mechanistically linked to the formation of an extended network of fibrillar structures induced by oxidative stress via the formation of a disulfide bond between Cys39 and Cys80. Such phosphorylation-dependent effect is likely controlled by changes in the hydrogen bonding network involving Cys39. We found that the sulfide ion inhibits the formation of such structures. This might represent the mechanism for the protective effect of the therapeutic agent Na2S on ischemic injury.


Asunto(s)
Amiloide , Cofilina 2 , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Amiloide/metabolismo , Cofilina 2/genética , Cofilina 2/metabolismo , Humanos , Estrés Oxidativo , Fosforilación
4.
Nat Commun ; 10(1): 1396, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30918256

RESUMEN

Myoglobin, encoded by MB, is a small cytoplasmic globular hemoprotein highly expressed in cardiac myocytes and oxidative skeletal myofibers. Myoglobin binds O2, facilitates its intracellular transport and serves as a controller of nitric oxide and reactive oxygen species. Here, we identify a recurrent c.292C>T (p.His98Tyr) substitution in MB in fourteen members of six European families suffering from an autosomal dominant progressive myopathy with highly characteristic sarcoplasmic inclusions in skeletal and cardiac muscle. Myoglobinopathy manifests in adulthood with proximal and axial weakness that progresses to involve distal muscles and causes respiratory and cardiac failure. Biochemical characterization reveals that the mutant myoglobin has altered O2 binding, exhibits a faster heme dissociation rate and has a lower reduction potential compared to wild-type myoglobin. Preliminary studies show that mutant myoglobin may result in elevated superoxide levels at the cellular level. These data define a recognizable muscle disease associated with MB mutation.


Asunto(s)
Cuerpos de Inclusión/patología , Fibras Musculares Esqueléticas/patología , Debilidad Muscular/genética , Enfermedades Musculares/genética , Miocitos Cardíacos/patología , Mioglobina/genética , Adulto , Femenino , Insuficiencia Cardíaca/etiología , Hemo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Debilidad Muscular/fisiopatología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiopatología , Enfermedades Musculares/diagnóstico por imagen , Enfermedades Musculares/patología , Enfermedades Musculares/fisiopatología , Mutación , Oxígeno/metabolismo , Linaje , Insuficiencia Respiratoria/etiología , Superóxidos/metabolismo , Tomografía Computarizada por Rayos X , Población Blanca/genética
5.
Hum Mol Genet ; 27(24): 4263-4272, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30215711

RESUMEN

Congenital myopathies are typically characterised by early onset hypotonia, weakness and hallmark features on biopsy. Despite the rapid pace of gene discovery, ∼50% of patients with a congenital myopathy remain without a genetic diagnosis following screening of known disease genes. We performed exome sequencing on two consanguineous probands diagnosed with a congenital myopathy and muscle biopsy showing selective atrophy/hypotrophy or absence of type II myofibres. We identified variants in the gene (MYL1) encoding the skeletal muscle fast-twitch specific myosin essential light chain (ELC) in both probands. A homozygous essential splice acceptor variant (c.479-2A > G, predicted to result in skipping of exon 5 was identified in Proband 1, and a homozygous missense substitution (c.488T>G, p.(Met163Arg)) was identified in Proband 2. Protein modelling of the p.(Met163Arg) substitution predicted it might impede intermolecular interactions that facilitate binding to the IQ domain of myosin heavy chain, thus likely impacting on the structure and functioning of the myosin motor. MYL1 was markedly reduced in skeletal muscle from both probands, suggesting that the missense substitution likely results in an unstable protein. Knock down of myl1 in zebrafish resulted in abnormal morphology, disrupted muscle structure and impaired touch-evoked escape responses, thus confirming that skeletal muscle fast-twitch specific myosin ELC is critical for myofibre development and function. Our data implicate MYL1 as a crucial protein for adequate skeletal muscle function and that MYL1 deficiency is associated with severe congenital myopathy.


Asunto(s)
Músculo Esquelético/fisiopatología , Cadenas Ligeras de Miosina/genética , Miotonía Congénita/genética , Alelos , Animales , Consanguinidad , Modelos Animales de Enfermedad , Exoma/genética , Homocigoto , Humanos , Masculino , Músculo Esquelético/metabolismo , Mutación , Cadenas Pesadas de Miosina/genética , Miotonía Congénita/fisiopatología , Linaje , Pez Cebra/genética
7.
Sci Rep ; 6: 35865, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27775057

RESUMEN

The pathological hallmark of misfolded protein diseases and aging is the accumulation of proteotoxic aggregates. However, the mechanisms of proteotoxicity and the dynamic changes in fiber formation and dissemination remain unclear, preventing a cure. Here we adopted a reductionist approach and used atomic force microscopy to define the temporal and spatial changes of amyloid aggregates, their modes of dissemination and the biochemical changes that may influence their growth. We show that pre-amyloid oligomers (PAO) mature to form linear and circular protofibrils, and amyloid fibers, and those can break reforming PAO that can migrate invading neighbor structures. Simulating the effect of immunotherapy modifies the dynamics of PAO formation. Anti-fibers as well as anti-PAO antibodies fragment the amyloid fibers, however the fragmentation using anti-fibers antibodies favored the migration of PAO. In conclusion, we provide evidence for the mechanisms of misfolded protein maturation and propagation and the effects of interventions on the resolution and dissemination of amyloid pathology.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/toxicidad , Agregado de Proteínas , Agregación Patológica de Proteínas , Pliegue de Proteína , Multimerización de Proteína , Humanos , Cinética , Microscopía de Fuerza Atómica , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA