Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 9(23): 24477-24488, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882095

RESUMEN

Iron oxide nanoparticles (NPs) are nontoxic and abundant materials which have long been investigated as reusable catalysts in oxidation reactions, but their use so far has been hampered by a low selectivity. Here, unsupported iron oxide NPs have been found to successfully catalyze the microwave-assisted oxidation of primary and secondary alcohols to their respective aldehydes and ketones with a high selectivity when N-methylmorpholine N-oxide was used as the terminal oxidant. The crystalline phase and size of the iron-based catalyst have a drastic effect on its activity, with small magnetite (Fe3O4) NPs being the optimal catalyst for this reaction. The nanocatalyst could be easily recovered by magnetoseparation and successfully recycled four times without any need for special pretreatment or reactivation step and with a minimal loss of activity. The subsequent loss of activity was attributed to the transition from magnetite (Fe3O4) to maghemite (γ-Fe2O3), as confirmed by X-ray diffraction, Fourier transform infrared, and X-ray absorption near-edge spectroscopy. The nanocatalyst could then be reactivated by the high-temperature microwave treatment and used again for the microwave-assisted oxidation reaction.

2.
ACS Omega ; 3(7): 7483-7493, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458905

RESUMEN

We have developed novel surface plasmon resonance (SPR) sensor chips whose surfaces bear newly synthesized functional self-assembled monolayer (SAM) anchoring lignin through covalent chemical bonds. The SPR sensor chips are remarkably robust and suitable for repetitive and accurate measurement of noncovalent lignin-peptide interactions, which is of significant interest in the chemical or biochemical conversion of renewable woody biomass to valuable chemical feedstocks. The lignin-anchored SAMs were prepared for the first time by click chemistry based on an azide-alkyne Huisgen cycloaddition: mixed SAMs are fabricated on gold thin film using a mixture of alkynyl and methyl thioalkyloligo(ethylene oxide) disulfides and then reacted with azidated milled wood lignins to furnish the functional SAMs anchoring lignins covalently. The resulting SAMs were characterized using infrared reflection-absorption, Raman, and X-ray photoelectron spectroscopies to confirm covalent immobilization of the lignins to the SAMs via triazole linkages and also to reveal that the SAM formation induces a helical conformation of the ethylene oxide chains. Further, SPR measurements of the noncovalent lignin-peptide interactions using lignin-binding peptides have demonstrated high reproducibility and durability of the prepared lignin-anchored sensor chips.

3.
J Nanosci Nanotechnol ; 15(2): 1171-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26353628

RESUMEN

In this research, we report the development, characterization and application of various plasmonic substrates (with localized surface plasmon resonance wavelength tunable by gold nanoparticle size) for two-photon absorption (TPA)-induced photodimerization of an anthracene derivative, anthracene carboxylic acid, in both surface and solution phase under incoherent visible light irradiation. Despite the efficient photoreaction property of anthracene derivatives and the huge number of publications about them, there has never been a report of a multiphoton photoreaction involving an anthracene derivative with the exception of a reverse photoconversion of anthracene photodimer to monomer with three-photon absorption. We examined the progress of the TPA-induced photoreaction by means of surface-enhanced Raman scattering, taking advantage of the ability of our plasmonic substrate to enhance and localize both incident light for photoreaction and Raman scattering signal for analysis of photoreaction products. The TPA-induced photoreaction in the case of anthracene carboxylic acid coated 2D array of gold nanoparticles gave different results according to the properties of the plasmonic substrate, such as the size of the gold nanoparticle and also its resultant optical properties. In particular, a stringent requirement to achieve TPA-induced photodimerization was found to be the matching between irradiation wavelength, localized surface plasmon resonance of the 2D array, and twice the wavelength of the molecular excitation of the target material (in this case, anthracene carboxylic acid). These results will be useful for the future development of efficient plasmonic substrates for TPA-induced photoreactions with various materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA