Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Commun Biol ; 5(1): 1181, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333531

RESUMEN

There is increasing evidence suggesting the role of microbiome alterations in relation to pancreatic adenocarcinoma and tumor immune functionality. However, molecular mechanisms of the interplay between microbiome signatures and/or their metabolites in pancreatic tumor immunosurveillance are not well understood. We have identified that a probiotic strain (Lactobacillus casei) derived siderophore (ferrichrome) efficiently reprograms tumor-associated macrophages (TAMs) and increases CD8 + T cell infiltration into tumors that paralleled a marked reduction in tumor burden in a syngeneic mouse model of pancreatic cancer. Interestingly, this altered immune response improved anti-PD-L1 therapy that suggests promise of a novel combination (ferrichrome and immune checkpoint inhibitors) therapy for pancreatic cancer treatment. Mechanistically, ferrichrome induced TAMs polarization via activation of the TLR4 pathway that represses the expression of iron export protein ferroportin (FPN1) in macrophages. This study describes a novel probiotic based molecular mechanism that can effectively induce anti-tumor immunosurveillance and improve immune checkpoint inhibitors therapy response in pancreatic cancer.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Probióticos , Ratones , Animales , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/metabolismo , Sideróforos , Microambiente Tumoral , Ferricromo/uso terapéutico , Monitorización Inmunológica , Inhibidores de Puntos de Control Inmunológico , Probióticos/farmacología , Neoplasias Pancreáticas
2.
Elife ; 112022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775614

RESUMEN

Bariatric surgery is a sustainable weight loss approach, including vertical sleeve gastrectomy (VSG). Obesity exacerbates tumor growth, while diet-induced weight loss impairs progression. It remains unknown how bariatric surgery-induced weight loss impacts cancer progression or alters response to therapy. Using a pre-clinical model of obesity followed by VSG or diet-induced weight loss, breast cancer progression and immune checkpoint blockade therapy were investigated. Weight loss by VSG or weight-matched dietary intervention before tumor engraftment protected against obesity-exacerbated tumor progression. However, VSG was not as effective as diet in reducing tumor burden despite achieving similar weight and adiposity loss. Leptin did not associate with changes in tumor burden; however, circulating IL-6 was elevated in VSG mice. Uniquely, VSG tumors displayed elevated inflammation and immune checkpoint ligand PD-L1+ myeloid and non-immune cells. VSG tumors also had reduced T lymphocytes and markers of cytolysis, suggesting an ineffective anti-tumor microenvironment which prompted investigation of immune checkpoint blockade. While obese mice were resistant to immune checkpoint blockade, anti-PD-L1 potently impaired tumor progression after VSG through improved anti-tumor immunity. Thus, in formerly obese mice, surgical weight loss followed by immunotherapy reduced breast cancer burden. Finally, we compared transcriptomic changes in adipose tissue after bariatric surgery from patients and mouse models. A conserved bariatric surgery-associated weight loss signature (BSAS) was identified which significantly associated with decreased tumor volume. Findings demonstrate conserved impacts of obesity and bariatric surgery-induced weight loss pathways associated with breast cancer progression.


As the number of people classified as obese rises globally, so do obesity-related health risks. Studies show that people diagnosed with obesity have inflammation that contributes to tumor growth and their immune system is worse at detecting cancer cells. But weight loss is not currently used as a strategy for preventing or treating cancer. Surgical procedures for weight loss, also known as 'bariatric surgeries', are becoming increasingly popular. Recent studies have shown that individuals who lose weight after these treatments have a reduced risk of developing tumors. But how bariatric surgery directly impacts cancer progression has not been well studied: does it slow tumor growth or boost the anti-tumor immune response? To answer these questions, Sipe et al. compared breast tumor growth in groups of laboratory mice that were obese due to being fed a high fat diet. The first group of mice lost weight after undergoing a bariatric surgery in which part of their stomach was removed. The second lost the same amount of weight but after receiving a restricted diet, and the third underwent a fake surgery and did not lose any weight. The experiments found that surgical weight loss cuts breast cancer tumor growth in half compared with obese mice. But mice who lost the same amount of weight through dietary restrictions had even less tumor growth than surgically treated mice. The surgically treated mice who lost weight had more inflammation than mice in the two other groups, and had increased amounts of proteins and cells that block the immune response to tumors. Giving the surgically treated mice a drug that enhances the immune system's ability to detect and destroy cancer cells reduced inflammation and helped shrink the mice's tumors. Finally, Sipe et al. identified 54 genes which were turned on or off after bariatric surgery in both mice and humans, 11 of which were linked with tumor size. These findings provide crucial new information about how bariatric surgery can impact cancer progression. Future studies could potentially use the conserved genes identified by Sipe et al. to develop new ways to stimulate the anti-cancer benefits of weight loss without surgery.


Asunto(s)
Cirugía Bariátrica , Neoplasias , Animales , Cirugía Bariátrica/efectos adversos , Gastrectomía/efectos adversos , Inhibidores de Puntos de Control Inmunológico , Ratones , Ratones Obesos , Neoplasias/cirugía , Obesidad/metabolismo , Pérdida de Peso
3.
Cancer Lett ; 531: 98-108, 2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35074498

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are an immature innate cell population that expands in pathological conditions such as cancer and suppresses T cells via production of immunosuppressive factors. Conversely, efficient cytotoxic T cell priming is dependent on the ability of antigen-presenting cells (APCs) to cross-present tumor antigens to CD8+ T cells, a process that requires a specific subtype of dendritic cells (DCs) called conventional DC1 (cDC1) which are often dysfunctional in cancer. One way to activate cDC1 is ligation of CD40 which is abundantly expressed by myeloid cells and its agonism leads to myeloid cell activation. Thus, targeting MDSCs while simultaneously expanding cross-presenting DCs represents a promising strategy that, when combined with agonistic CD40, may result in long-lasting protective immunity. In this study, we investigated the effect of PKC agonists PEP005 and prostratin on MDSC expansion, differentiation, and recruitment to the tumor microenvironment. Our findings demonstrate that PKC agonists decreased MDSC expansion from hematopoietic progenitors and induced M-MDSC differentiation to an APC-like phenotype that expresses cDC1-related markers via activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Simultaneously, PKC agonists favored cDC1 expansion at the expense of cDC2 and plasmacytoid DCs (pDC). Functionally, PKC agonists blunted MDSC suppressive activity and enhanced MDSC cross-priming capacity both in vitro and in vivo. Finally, combination of PKC agonism with agonistic CD40 mAb resulted in a marked reduction in tumor growth with a significant increase in intratumoral activated CD8+ T cells and tissue-resident memory CD8+ T cells in a syngeneic breast cancer mouse model. In sum, this work proposes a novel promising strategy to simultaneously target MDSCs and promote APC function that may have highly impactful clinical relevance in cancer patients.


Asunto(s)
Neoplasias de la Mama , Reactividad Cruzada , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Antígenos CD40/metabolismo , Linfocitos T CD8-positivos , Células Dendríticas , Femenino , Humanos , Inmunidad Innata , Ratones , Microambiente Tumoral
4.
J Gastrointest Surg ; 26(1): 113-121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34260016

RESUMEN

PURPOSE: Immunotherapy, such as checkpoint inhibitors against anti-programmed death-ligand 1 (PD-L1), has not been successful in treating patients with pancreatic ductal adenocarcinoma (PDAC). Tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and the TGF-ß cytokine are critical in anti-cancer immunity. We hypothesized that TGF-ß enhances the immunosuppressive effects of TAM, MDSC, and DC presence in tumors. METHODS: Using a murine PDAC cell line derived from a genetically engineered mouse model, we orthotopically implanted treated cells plus drug embedded in Matrigel into immunocompetent mice. Treatments included saline control, TGF-ß1, or a TGF-ß receptor 1 small molecule inhibitor, galunisertib. We investigated TAM, MDSC, DC, and TAM PD-L1 expression with flow cytometry in tumors. Separately, we used the TIMER2.0 database to analyze TAM and PD-L1 gene expression in human PDAC tumors in TCGA database. RESULTS: TGF-ß did not alter MDSC or DC frequencies in the primary tumors. However, in PDAC metastases to the liver, TGF-ß decreased the proportion of MDSCs (P=0.022) and DCs (P=0.005). TGF-ß significantly increased the percent of high PD-L1 expressing TAMs (32 ± 6 % vs. 12 ± 5%, P=0.013) but not the proportion of TAMs in primary and metastatic tumors. TAM PD-L1 gene expression in TCGA PDAC database was significantly correlated with tgb1 and tgfbr1 gene expression (P<0.01). CONCLUSIONS: TGF-ß is important in PDAC anti-tumor immunity, demonstrating context-dependent impact on immune cells. TGF-ß has an overall immunosuppressive effect mediated by TAM PD-L1 expression and decreased presence of DCs. Future investigations will focus on enhancing anti-cancer immune effects of TGF-ß receptor inhibition.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Factor de Crecimiento Transformador beta/farmacología , Animales , Antígeno B7-H1 , Carcinoma Ductal Pancreático/tratamiento farmacológico , Células Dendríticas , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Macrófagos , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico
6.
Cell Rep ; 35(12): 109285, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161764

RESUMEN

Immune checkpoint blockade (ICB) has improved outcomes in some cancers. A major limitation of ICB is that most patients fail to respond, which is partly attributable to immunosuppression. Obesity appears to improve immune checkpoint therapies in some cancers, but impacts on breast cancer (BC) remain unknown. In lean and obese mice, tumor progression and immune reprogramming were quantified in BC tumors treated with anti-programmed death-1 (PD-1) or control. Obesity augments tumor incidence and progression. Anti-PD-1 induces regression in lean mice and potently abrogates progression in obese mice. BC primes systemic immunity to be highly responsive to obesity, leading to greater immunosuppression, which may explain greater anti-PD-1 efficacy. Anti-PD-1 significantly reinvigorates antitumor immunity despite persistent obesity. Laminin subunit beta-2 (Lamb2), downregulated by anti-PD-1, significantly predicts patient survival. Lastly, a microbial signature associated with anti-PD-1 efficacy is identified. Thus, anti-PD-1 is highly efficacious in obese mice by reinvigorating durable antitumor immunity. VIDEO ABSTRACT.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Obesidad/complicaciones , Microambiente Tumoral/inmunología , Animales , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/genética , Progresión de la Enfermedad , Femenino , Microbioma Gastrointestinal , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Terapia de Inmunosupresión , Inmunoterapia , Linfocitos Infiltrantes de Tumor/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptores de Estrógenos/metabolismo , Bazo/patología , Carga Tumoral , Microambiente Tumoral/efectos de los fármacos
7.
Cell Oncol (Dordr) ; 44(3): 673-687, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33694102

RESUMEN

PURPOSE: The transforming growth factor-beta (TGF-ß) pathway plays a paradoxical, context-dependent role in pancreatic ductal adenocarcinoma (PDAC): a tumor-suppressive role in non-metastatic PDAC and a tumor-promotive role in metastatic PDAC. We hypothesize that non-SMAD-TGF-ß signaling induces PDAC progression. METHODS: We investigated the expression of non-SMAD-TGF-ß signaling proteins (pMAPK14, PD-L1, pAkt and c-Myc) in patient-derived tissues, cell lines and an immunocompetent mouse model. Experimental models were complemented by comparing the signaling proteins in PDAC specimens from patients with various survival intervals. We manipulated models with TGF-ß, gemcitabine (DNA synthesis inhibitor), galunisertib (TGF-ß receptor inhibitor) and MK-2206 (Akt inhibitor) to investigate their effects on NF-κB, ß-catenin, c-Myc and PD-L1 expression. PD-L1 expression was also investigated in cancer cells and tumor associated macrophages (TAMs) in a mouse model. RESULTS: We found that tumors from patients with aggressive PDAC had higher levels of the non-SMAD-TGF-ß signaling proteins pMAPK14, PD-L1, pAkt and c-Myc. In PDAC cells with high baseline ß-catenin expression, TGF-ß increased ß-catenin expression while gemcitabine increased PD-L1 expression. Gemcitabine plus galunisertib decreased c-Myc and NF-κB expression, but induced PD-L1 expression in some cancer models. In mice, gemcitabine plus galunisertib treatment decreased metastases (p = 0.018), whereas galunisertib increased PD-L1 expression (p < 0.0001). In the mice, liver metastases contained more TAMs compared to the primary pancreatic tumors (p = 0.001), and TGF-ß increased TAM PD-L1 expression (p < 0.05). CONCLUSIONS: In PDAC, the non-SMAD-TGF-ß signaling pathway leads to more aggressive phenotypes, TAM-induced immunosuppression and PD-L1 expression. The divergent effects of TGF-ß ligand versus receptor inhibition in tumor cells versus TAMs may explain the TGF-ß paradox. Further evaluation of each mechanism is expected to lead to the development of targeted therapies.


Asunto(s)
Antígeno B7-H1/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Animales , Progresión de la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
8.
J Am Heart Assoc ; 10(7): e018536, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33719500

RESUMEN

Background Sex is a prominent risk factor for abdominal aortic aneurysms (AAAs), and angiotensin II (Ang II) induces AAA formation to a greater degree in male than in female mice. We previously reported that cytochrome P450 1B1 contributes to the development of hypertension, as well as AAAs, in male mice. We also found that a cytochrome P450 1B1-generated metabolite of testosterone, 6ß-hydroxytestosterone (6ß-OHT), contributes to Ang II-induced hypertension and associated cardiovascular and renal pathogenesis in male mice. The current study was conducted to determine the contribution of 6ß-OHT to Ang II-induced AAA development in Apoe-/- male mice. Methods and Results Intact or castrated Apoe-/-/Cyp1b1+/+ and Apoe-/-/Cyp1b1-/- male mice were infused with Ang II or its vehicle for 28 days, and administered 6ß-OHT every third day for the duration of the experiment. Abdominal aortas were then evaluated for development of AAAs. We observed a significant increase in the incidence and severity of AAAs in intact Ang II-infused Apoe-/-/Cyp1b1+/+ mice, compared with vehicle-treated mice, which were minimized in castrated Apoe-/-/Cyp1b1+/+ and intact Apoe-/-/Cyp1b1-/- mice infused with Ang II. Treatment with 6ß-OHT significantly restored the incidence and severity of AAAs in Ang II-infused castrated Apoe-/-/Cyp1b1+/+ and intact Apoe-/-/Cyp1b1-/- mice. However, administration of testosterone failed to increase AAA incidence and severity in Ang II-infused intact Apoe-/-/Cyp1b1-/- mice. Conclusions Our results indicate that the testosterone-cytochrome P450 1B1-generated metabolite 6ß-OHT contributes to Ang II-induced AAA development in Apoe-/- male mice.


Asunto(s)
Angiotensina II/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Citocromo P-450 CYP1B1 , Hidroxitestosteronas/metabolismo , Testosterona/metabolismo , Animales , Apolipoproteínas E/genética , Presión Sanguínea/fisiología , Castración , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
9.
Immunol Rev ; 295(1): 220-239, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32320071

RESUMEN

Bile acids (BAs) are known facilitators of nutrient absorption but recent paradigm shifts now recognize BAs as signaling molecules regulating both innate and adaptive immunity. Bile acids are synthesized from cholesterol in the liver with subsequent microbial modification and fermentation adding complexity to pool composition. Bile acids act on several receptors such as Farnesoid X Receptor and the G protein-coupled BA receptor 1 (TGR5). Interestingly, BA receptors (BARs) are expressed on immune cells and activation either by BAs or BAR agonists modulates innate and adaptive immune cell populations skewing their polarization toward a more tolerogenic anti-inflammatory phenotype. Intriguingly, recent evidence also suggests that BAs promote anti-tumor immune response through activation and recruitment of tumoricidal immune cells such as natural killer T cells. These exciting findings have redefined BA signaling in health and disease wherein they may suppress inflammation on the one hand, yet promote anti-tumor immunity on the other hand. In this review, we provide our readers with the most recent understanding of the interaction of BAs with the host microbiome, their effect on innate and adaptive immunity in health and disease with a special focus on obesity, bariatric surgery-induced weight loss, and immune checkpoint blockade in cancer.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Microbiota , Obesidad/etiología , Obesidad/metabolismo , Animales , Cirugía Bariátrica , Biomarcadores , Susceptibilidad a Enfermedades , Metabolismo Energético/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Proteínas de Punto de Control Inmunitario/metabolismo , Inmunomodulación/efectos de los fármacos , Microbiota/inmunología , Neoplasias/complicaciones , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Obesidad/complicaciones , Obesidad/cirugía , Pronóstico , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
10.
Biol Sex Differ ; 11(1): 4, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31948482

RESUMEN

BACKGROUND: Previously, we showed that 6ß-hydroxytestosterone (6ß-OHT), a cytochrome P450 1B1 (CYP1B1)-derived metabolite of testosterone, contributes to angiotensin II (Ang II)-induced hypertension in male mice. This study was conducted to test the hypothesis that 6ß-OHT contributes to increased vascular reactivity, endothelial dysfunction, vascular hypertrophy, and reactive oxygen species production associated with Ang II-induced hypertension. METHODS: Eight- to 10-week-old intact or castrated C57BL/6 J (Cyp1b1+/+ and Cyp1b1-/-) mice were anesthetized for implantation of a micro-osmotic pump which delivered Ang II (700 ng/kg/day) or saline for 14 days. Mice were injected with 6ß-OHT (15 µg/g b.w every third day), flutamide (8 mg/kg every day), or its vehicle. Blood pressure was measured via tail-cuff. Vascular reactivity, endothelial-dependent and endothelial-independent vasodilation, media to lumen ratio, fibrosis by collagen deposition, and reactive oxygen species production by dihydroethidium staining were determined in the isolated thoracic aorta. RESULTS: The response of thoracic aorta to phenylephrine and endothelin-1 was increased in Ang II-infused Cyp1b1+/+ mice compared to intact Cyp1b1-/- or castrated Cyp1b1+/+ and Cyp1b1-/- mice; these effects of Ang II were restored by treatment with 6ß-OHT. Ang II infusion caused endothelial dysfunction, as indicated by decreased relaxation of the aorta to acetylcholine in Cyp1b1+/+ but not Cyp1b1-/- or castrated Cyp1b1+/+ and Cyp1b1-/- mice. 6ß-OHT did not alter Ang II-induced endothelial dysfunction in Cyp1b1+/+ mice but restored it in Cyp1b1-/- or castrated Cyp1b1+/+ and Cyp1b1-/- mice. Ang II infusion increased media to lumen ratio and caused fibrosis and reactive oxygen species production in the aorta of Cyp1b1+/+ mice. These effects were minimized in the aorta of Cyp1b1-/- or castrated Cyp1b1+/+ and Cyp1b1-/- mice and restored by treatment with 6ß-OHT. Treatment with the androgen receptor antagonist flutamide reduced blood pressure and vascular hypertrophy in castrated Ang II-infused mice injected with 6ß-OHT. CONCLUSIONS: 6ß-OHT is required for the action of Ang II to increase vascular reactivity and cause endothelial dysfunction, hypertrophy, and increase in oxygen radical production. The effect of 6ß-OHT in mediating Ang II-induced hypertension and associated hypertrophy is dependent on the androgen receptor. Therefore, CYP1B1 could serve as a novel target for the development of therapeutics to treat vascular changes in hypertensive males.


Asunto(s)
Angiotensina II/metabolismo , Aorta Torácica/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Hidroxitestosteronas/metabolismo , Hipertensión/metabolismo , Angiotensina II/administración & dosificación , Animales , Aorta Torácica/efectos de los fármacos , Citocromo P-450 CYP1B1/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
11.
J Immunol ; 202(4): 1265-1286, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30659108

RESUMEN

Macrophages (MΦs) are heterogeneous and metabolically flexible, with metabolism strongly affecting immune activation. A classic response to proinflammatory activation is increased flux through glycolysis with a downregulation of oxidative metabolism, whereas alternative activation is primarily oxidative, which begs the question of whether targeting glucose metabolism is a viable approach to control MΦ activation. We created a murine model of myeloid-specific glucose transporter GLUT1 (Slc2a1) deletion. Bone marrow-derived MΦs (BMDM) from Slc2a1M-/- mice failed to uptake glucose and demonstrated reduced glycolysis and pentose phosphate pathway activity. Activated BMDMs displayed elevated metabolism of oleate and glutamine, yet maximal respiratory capacity was blunted in MΦ lacking GLUT1, demonstrating an incomplete metabolic reprogramming. Slc2a1M-/- BMDMs displayed a mixed inflammatory phenotype with reductions of the classically activated pro- and anti-inflammatory markers, yet less oxidative stress. Slc2a1M-/- BMDMs had reduced proinflammatory metabolites, whereas metabolites indicative of alternative activation-such as ornithine and polyamines-were greatly elevated in the absence of GLUT1. Adipose tissue MΦs of lean Slc2a1M-/- mice had increased alternative M2-like activation marker mannose receptor CD206, yet lack of GLUT1 was not a critical mediator in the development of obesity-associated metabolic dysregulation. However, Ldlr-/- mice lacking myeloid GLUT1 developed unstable atherosclerotic lesions. Defective phagocytic capacity in Slc2a1M-/- BMDMs may have contributed to unstable atheroma formation. Together, our findings suggest that although lack of GLUT1 blunted glycolysis and the pentose phosphate pathway, MΦ were metabolically flexible enough that inflammatory cytokine release was not dramatically regulated, yet phagocytic defects hindered MΦ function in chronic diseases.


Asunto(s)
Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 1/metabolismo , Macrófagos/metabolismo , Animales , Transportador de Glucosa de Tipo 1/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo
12.
Hypertension ; 69(6): 1104-1112, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28416584

RESUMEN

Cytochrome P450 1B1 protects against angiotensin II (Ang II)-induced hypertension and associated cardiovascular changes in female mice, most likely via production of 2-methoxyestradiol. This study was conducted to determine whether 2-methoxyestradiol ameliorates Ang II-induced hypertension, renal dysfunction, and end-organ damage in intact Cyp1b1-/-, ovariectomized female, and Cyp1b1+/+ male mice. Ang II or vehicle was infused for 2 weeks and administered concurrently with 2-methoxyestradiol. Mice were placed in metabolic cages on day 12 of Ang II infusion for urine collection for 24 hours. 2-Methoxyestradiol reduced Ang II-induced increases in systolic blood pressure, water consumption, urine output, and proteinuria in intact female Cyp1b1-/- and ovariectomized mice. 2-Methoxyestradiol also reduced Ang II-induced increase in blood pressure, water intake, urine output, and proteinuria in Cyp1b1+/+ male mice. Treatment with 2-methoxyestradiol attenuated Ang II-induced end-organ damage in intact Cyp1b1-/- and ovariectomized Cyp1b1+/+ and Cyp1b1-/- female mice and Cyp1b1+/+ male mice. 2-Methoxyestradiol mitigated Ang II-induced increase in urinary excretion of angiotensinogen in intact Cyp1b1-/- and ovariectomized Cyp1b1+/+ and Cyp1b1-/- female mice but not in Cyp1b1+/+ male mice. The G protein-coupled estrogen receptor 1 antagonist G-15 failed to alter Ang II-induced increases in blood pressure and renal function in Cyp1b1+/+ female mice. These data suggest that 2-methoxyestradiol reduces Ang II-induced hypertension and associated end-organ damage in intact Cyp1b1-/-, ovariectomized Cyp1b1+/+ and Cyp1b1-/- female mice, and Cyp1b1+/+ male mice independent of G protein-coupled estrogen receptor 1. Therefore, 2-methoxyestradiol could serve as a therapeutic agent for treating hypertension and associated pathogenesis in postmenopausal females, and in males.


Asunto(s)
Angiotensina II/farmacología , Citocromo P-450 CYP1B1/efectos de los fármacos , Estradiol/análogos & derivados , Hipertensión/tratamiento farmacológico , Enfermedades Renales/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , 2-Metoxiestradiol , Animales , Presión Sanguínea/efectos de los fármacos , Determinación de la Presión Sanguínea , Citocromo P-450 CYP1B1/metabolismo , Modelos Animales de Enfermedad , Estradiol/farmacología , Femenino , Hipertensión/inducido químicamente , Enfermedades Renales/patología , Pruebas de Función Renal , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovariectomía/métodos , Distribución Aleatoria , Sensibilidad y Especificidad , Factores Sexuales
13.
Hypertension ; 67(5): 916-26, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26928804

RESUMEN

6ß-Hydroxytestosterone, a cytochrome P450 1B1-derived metabolite of testosterone, contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the maintenance of renal homeostasis, development of hypertension, and end-organ damage, this study was conducted to determine the contribution of 6ß-hydroxytestosterone to angiotensin II actions on water consumption and renal function in male Cyp1b1(+/+) and Cyp1b1(-/-) mice. Castration of Cyp1b1(+/+) mice or Cyp1b1(-/-) gene disruption minimized the angiotensin II-induced increase in water consumption, urine output, proteinuria, and sodium excretion and decreases in urine osmolality. 6ß-Hydroxytestosterone did not alter angiotensin II-induced increases in water intake, urine output, proteinuria, and sodium excretion or decreases in osmolality in Cyp1b1(+/+) mice, but restored these effects of angiotensin II in Cyp1b1(-/-) or castrated Cyp1b1(+/+) mice. Cyp1b1 gene disruption or castration prevented angiotensin II-induced renal fibrosis, oxidative stress, inflammation, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, and angiotensin-converting enzyme. 6ß-Hydroxytestosterone did not alter angiotensin II-induced renal fibrosis, inflammation, oxidative stress, urinary excretion of angiotensinogen, expression of angiotensin II type 1 receptor, or angiotensin-converting enzyme in Cyp1b1(+/+)mice. However, in Cyp1b1(-/-) or castrated Cyp1b1(+/+) mice, it restored these effects of angiotensin II. These data indicate that 6ß-hydroxytestosterone contributes to increased thirst, impairment of renal function, and end-organ injury associated with angiotensin II-induced hypertension in male mice and that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension in male mice.


Asunto(s)
Angiotensina II/farmacología , Citocromo P-450 CYP1B1/genética , Hidroxitestosteronas/farmacología , Enfermedades Renales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Análisis de Varianza , Animales , Biopsia con Aguja , Castración , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Inmunohistoquímica , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Pruebas de Función Renal , Masculino , Ratones , ARN Mensajero/análisis , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo , Valores de Referencia , Factores de Riesgo
14.
Hypertension ; 65(6): 1279-87, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25870196

RESUMEN

Previously, we showed that Cyp1b1 gene disruption minimizes angiotensin II-induced hypertension and associated pathophysiological changes in male mice. This study was conducted to test the hypothesis that cytochrome P450 1B1-generated metabolites of testosterone, 6ß-hydroxytestosterone and 16α-hydroxytestosterone, contribute to angiotensin II-induced hypertension and its pathogenesis. Angiotensin II infusion for 2 weeks increased cardiac cytochrome P450 1B1 activity and plasma levels of 6ß-hydroxytestosterone, but not 16α-hydroxytestosterone, in Cyp1b1(+/+) mice without altering Cyp1b1 gene expression; these effects of angiotensin II were not observed in Cyp1b1(-/-) mice. Angiotensin II-induced increase in systolic blood pressure and associated cardiac hypertrophy, and fibrosis, measured by intracardiac accumulation of α-smooth muscle actin, collagen, and transforming growth factor-ß, and increased nicotinamide adenine dinucleotide phosphate oxidase activity and production of reactive oxygen species; these changes were minimized in Cyp1b1(-/-) or castrated Cyp1b1(+/+) mice, and restored by treatment with 6ß-hydroxytestoterone. In Cyp1b1(+/+) mice, 6ß-hydroxytestosterone did not alter the angiotensin II-induced increase in systolic blood pressure; the basal systolic blood pressure was also not affected by this agent in either genotype. Angiotensin II or castration did not alter cardiac, angiotensin II type 1 receptor, angiotensin-converting enzyme, Mas receptor, or androgen receptor mRNA levels in Cyp1b1(+/+) or in Cyp1b1(-/-) mice. These data suggest that the testosterone metabolite, 6ß-hydroxytestosterone, contributes to angiotensin II-induced hypertension and associated cardiac pathogenesis in male mice, most probably by acting as a permissive factor. Moreover, cytochrome P450 1B1 could serve as a novel target for developing agents for treating renin-angiotensin and testosterone-dependent hypertension and associated pathogenesis in males.


Asunto(s)
Angiotensina II/farmacología , Cardiomegalia/fisiopatología , Citocromo P-450 CYP1B1/genética , Hidroxitestosteronas/farmacología , Hipertensión/fisiopatología , Animales , Castración , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hidroxitestosteronas/metabolismo , Hipertensión/tratamiento farmacológico , Masculino , Ratones , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo , Valores de Referencia
15.
Am J Physiol Renal Physiol ; 308(9): F981-92, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25694484

RESUMEN

Recently, we demonstrated in female mice that protection against ANG II-induced hypertension and associated cardiovascular changes depend on cytochrome P-450 (CYP)1B1. The present study was conducted to determine if Cyp1b1 gene disruption ameliorates renal dysfunction and organ damage associated with ANG II-induced hypertension in female mice. ANG II (700 ng·kg(-1)·min(-1)) infused by miniosmotic pumps for 2 wk in female Cyp1b1(+/+) mice did not alter water consumption, urine output, Na(+) excretion, osmolality, or protein excretion. However, in Cyp1b1(-/-) mice, ANG II infusion significantly increased (P < 0.05) water intake (5.50 ± 0.42 ml/24 h with vehicle vs. 8.80 ± 0.60 ml/24 h with ANG II), urine output (1.44 ± 0.37 ml/24 h with vehicle vs. 4.30 ± 0.37 ml/24 h with ANG II), and urinary Na(+) excretion (0.031 ± 0.016 mmol/24 h with vehicle vs. 0.099 ± 0.010 mmol/24 h with ANG II), decreased osmolality (2,630 ± 79 mosM/kg with vehicle vs. 1,280 ± 205 mosM/kg with ANG II), and caused proteinuria (2.60 ± 0.30 mg/24 h with vehicle vs. 6.96 ± 0.55 mg/24 h with ANG II). Infusion of ANG II caused renal fibrosis, as indicated by an accumulation of renal interstitial α-smooth muscle actin, collagen, and transforming growth factor-ß in Cyp1b1(-/-) but not Cyp1b1(+/+) mice. ANG II also increased renal production of ROS and urinary excretion of thiobarburic acid-reactive substances and reduced the activity of antioxidants and urinary excretion of nitrite/nitrate and the 17ß-estradiol metabolite 2-methoxyestradiol in Cyp1b1(-/-) but not Cyp1b1(+/+) mice. These data suggest that Cyp1b1 plays a critical role in female mice in protecting against renal dysfunction and end-organ damage associated with ANG II-induced hypertension, in preventing oxidative stress, and in increasing activity of antioxidant systems, most likely via generation of 2-methoxyestradiol from 17ß-estradiol.


Asunto(s)
Angiotensina II , Citocromo P-450 CYP1B1/metabolismo , Hipertensión/complicaciones , Enfermedades Renales/etiología , Riñón/enzimología , Animales , Catalasa/metabolismo , Citocromo P-450 CYP1B1/deficiencia , Citocromo P-450 CYP1B1/genética , Modelos Animales de Enfermedad , Ingestión de Líquidos , Estradiol/análogos & derivados , Estradiol/orina , Femenino , Fibrosis , Genotipo , Hipertensión/enzimología , Hipertensión/genética , Hipertensión/fisiopatología , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/enzimología , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Enfermedades Renales/prevención & control , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasas/metabolismo , Natriuresis , Estrés Oxidativo , Fenotipo , Sistema Renina-Angiotensina , Factores Sexuales , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Micción
16.
Hypertension ; 64(1): 134-40, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24777982

RESUMEN

To determine the role of cytochrome P450 (CYP) 1B1 in the sex difference in response to angiotensin II (Ang II)-induced hypertension, female Cyp1b1(+/+) and Cyp1b1(-/-) mice were infused with Ang II (700 ng/kg per minute) or vehicle with or without ovariectomy. In addition, mice were treated with the CYP1B1 inhibitor, 2,3',4,5'-tetramethoxystilbene (TMS; 300 µg/kg IP, every third day), and 17-ß estradiol metabolites, 2-hydroxyestradiol (2-OHE), 4-OHE, or 2-methoxyestradiol (1.5 mg/kg per day IP, for 2 weeks) and systolic blood pressure (SBP) measured. Ang II increased SBP more in Cyp1b1(-/-) than in Cyp1b1(+/+) mice (119±3-171±11 versus 120±4-149±4 mm Hg; P<0.05). Ang II caused cardiovascular remodeling and endothelial dysfunction and increased vascular reactivity and oxidative stress in Cyp1b1(-/-) but not in Cyp1b1(+/+)mice. The Ang II-induced increase in SBP was enhanced by ovariectomy and TMS in Cyp1b1(+/+) but not in Cyp1b1(-/-) mice. 2-OHE did not alter Ang II-induced increase in SBP in Cyp1b1(+/+) mice but minimized it in Cyp1b1(-/-) mice, whereas 4-OHE enhanced Ang II-induced increase in SBP in Cyp1b1(+/+) mice but did not alter the increased SBP in Cyp1b1(-/-) mice. 2-OHE-derived catechol-O-methyltransferase metabolite, 2-methoxyestradiol, inhibited Ang II-induced increase in SBP in Cyp1b1(-/-) mice. Ang II increased plasma levels of 2-methoxyestradiol in Cyp1b1(+/+) but not in Cyp1b1(-/-) mice and increased activity of cardiac extracellular signal-regulated kinase 1/2, p38 mitogen-activated kinase, c-Src, and Akt in Cyp1b1(-/-) but not in Cyp1b1(+/+) mice. These data suggest that CYP1B1 protects against Ang II-induced hypertension and associated cardiovascular changes in female mice, most likely mediated by 2-methoxyestradiol-inhibiting oxidative stress and the activity of these signaling molecules.


Asunto(s)
Angiotensina II , Hidrocarburo de Aril Hidroxilasas/metabolismo , Estradiol/metabolismo , Hipertensión/metabolismo , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Citocromo P-450 CYP1B1 , Femenino , Corazón/efectos de los fármacos , Hipertensión/inducido químicamente , Ratones , Ratones Noqueados , Miocardio/metabolismo , Estrés Oxidativo/efectos de los fármacos
17.
Am J Physiol Heart Circ Physiol ; 302(5): H1116-22, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22198171

RESUMEN

Several studies have focused on the beneficial effects of peripheral angiotensin-(1-7) [Ang-(1-7)] in the regulation of cardiovascular function, showing its counterregulatory effect against the actions of angiotensin II (ANG II). However, its actions in the central nervous system are not completely understood. In the present study, we investigated the intracellular mechanisms underlying the action of ANG-(1-7) using the patch-clamp technique in neurons cultured from the hypothalamus of neonatal spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats. Superfusion of neurons with ANG II (100 nM) significantly increased neuronal firing in both strains of rats, and this chronotropic effect of ANG II was significantly enhanced in prehypertensive SHR neurons compared with WKY rat neurons. The enhanced chronotropic effect of ANG II was attenuated by a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY 294002 (10 µM). Superfusion of neurons with ANG-(1-7) (100 nM) did not alter the neuronal firing rate in either SHR or WKY neurons; however, it significantly attenuated the chronotropic action of ANG II exclusively in prehypertensive SHR neurons. This counterregulatory effect of ANG-(1-7) on ANG II action in prehypertensive SHR neurons was attenuated by cotreatment with either A-779, a Mas receptor antagonist, or bisperoxovanadium, a phosphatase and tensin homologue deleted on chromosome ten (PTEN) inhibitor. In addition, incubation of WKY and prehypertensive SHR neurons with ANG-(1-7) significantly increased PTEN activity. The data demonstrate that ANG-(1-7) counterregulates the chronotropic action of ANG II via a PTEN-dependent signaling pathway in prehypertensive SHR neurons.


Asunto(s)
Angiotensina II/farmacología , Angiotensina I/farmacología , Angiotensinógeno/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Fragmentos de Péptidos/farmacología , Angiotensina I/antagonistas & inhibidores , Angiotensina II/análogos & derivados , Animales , Células Cultivadas , Cromonas/farmacología , Inhibidores Enzimáticos/farmacología , Hipotálamo/efectos de los fármacos , Masculino , Morfolinas/farmacología , Neuronas/efectos de los fármacos , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fragmentos de Péptidos/antagonistas & inhibidores , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Compuestos de Vanadio/farmacología
18.
J Pharmacol Exp Ther ; 336(2): 372-80, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21047952

RESUMEN

Microinjection of apelin-13 into the rostral ventrolateral medulla (RVLM) in the brainstem increases blood pressure in rats. In the present study, we tested the hypotheses that apelin-13 directly stimulates neuronal activity in neurons cultured from the brainstem and that NAD(P)H oxidase-derived reactive oxygen species are involved in this action of apelin-13. Microinjection of apelin-13 into the RVLM resulted in increases in arterial pressure and in renal sympathetic nerve activity in Sprague-Dawley rats. The pressor effect of apelin-13 was attenuated by the specific NAD(P)H-oxidase inhibitor gp91ds-tat. In neurons cultured from the ventral brainstem, spontaneous action potentials were recorded using current-clamp recording. Superfusion of neurons with apelin-13 (100 nM) increased the neuronal firing rate from 0.79 ± 0.14 to 1.45 ± 0.26 Hz (n = 7, P < 0.01) in angiotensin II receptor-like 1-positive neurons, identified with single-cell reverse transcriptase-polymerase chain reaction. Neither the angiotensin II type 1 receptor antagonist losartan nor the angiotensin II type 2 receptor antagonist 1-[[4-(dimethylamino)-3-methylphenyl[methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid ditrifluoroacetate (PD123319) altered the positive chronotropic effect of apelin-13. Pretreatment of cells with either the reactive oxygen species scavenger superoxide dismutase [polyethylene glycol-superoxide dismutase (PEG-SOD), 25 U/ml] or with gp91ds-tat significantly attenuated the chronotropic action of apelin-13. PEG-SOD and gp91ds-tat alone had no effect on basal neuronal firing. In addition, apelin-13 significantly increased NAD(P)H oxidase activity and elevated intracellular superoxide levels in neuronal cultures. The superoxide generator xanthine-xanthine oxidase also increased neuronal activity in neurons, mimicking the neuronal response to apelin-13. These observations provide the first evidence that apelin-13 directly increases neuronal activity via stimulation of NAD(P)H oxidase-derived superoxide, a cellular signaling mechanism that may be involved in the pressor effect of apelin-13 in the RVLM.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Bulbo Raquídeo/efectos de los fármacos , NADPH Oxidasas/fisiología , Superóxidos/metabolismo , Animales , Receptores de Apelina , Canales de Calcio/fisiología , Células Cultivadas , Glicoproteínas/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Bulbo Raquídeo/fisiología , NADPH Oxidasas/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptor de Angiotensina Tipo 1/fisiología , Receptores Acoplados a Proteínas G/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA