Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Aging (Albany NY) ; 16(1): 1-14, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38189848

RESUMEN

Observational studies in preclinical models demonstrate age-related declines in circadian functions. We hypothesized that age would be associated with declines in function of cell-autonomous circadian clocks in human tissue. Accordingly, we cultured adipose progenitor cells (APCs) from previously collected white-adipose tissue biopsies from abdominal subcutaneous depots of young (Age: 23.4 ± 2.1 yrs) vs. older female participants (Age: 70.6 ± 5.9 yrs). Using an in vitro model, we compared rhythmic gene expression profiles of core clock components, as an indicator of circadian oscillatory function. We observed consistent circadian rhythmicity of core clock components in young and older-APCs. Expression analysis showed increased levels of some components in older-APCs (CLOCK, CRY1, NR1D1) vs. young. We also investigated resveratrol (RSV), a well-known longevity-enhancing effector, for its effects on rhythmic clock gene expression profiles. We found that RSV resulted in gained rhythmicity of some components (CLOCK and CRY), loss of rhythmicity in others (PER2, CRY2), and altered some rhythmic parameters (NR1D1 and NR1D2), consistent in young and older-APCs. The observation of detectable circadian rhythmicity retained in vitro suggests that the oscillatory function of the cell-autonomous core clock in APCs is preserved at this stage of the aging process. RSV impacts core clock gene expression in APCs, implicating its potential as a therapeutic agent for longevity by targeting the core clock.


Asunto(s)
Relojes Circadianos , Anciano , Femenino , Humanos , Relojes Circadianos/genética , Ritmo Circadiano/genética , Resveratrol/farmacología , Células Madre , Transcriptoma , Adulto Joven , Adulto
2.
Am J Physiol Endocrinol Metab ; 325(4): E291-E302, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584609

RESUMEN

Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous, however, this association remains controversial. The aim of this study was to perform an in-depth multifactorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active, n = 9), individuals with obesity (Obese, n = 9), and individuals with obesity, insulin resistance, and type 2 diabetes (T2D, n = 22). Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic-supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by Blue Native (BN)-PAGE and immunoblot. Tricarboxylic (TCA) cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity, supercomplex assembly, TCA cycle intermediates, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (body mass index, age, and aerobic capacity). We highlight that lean, active individuals have greater mitochondrial content, mitochondrial capacity, supercomplex assembly, and TCA cycle intermediates. These phenotypical changes are reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance. Clinical trial number: NCT01911104.NEW & NOTEWORTHY Whether impaired mitochondrial capacity contributes to skeletal muscle insulin resistance is debated. Our multifactorial analysis shows no differences in skeletal muscle mitochondrial content, mitochondrial capacity, and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity). We highlight that lean, active individuals have enhanced skeletal muscle mitochondrial capacity that is also reflected at the level of DNA methylation and gene transcription.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Resistencia a la Insulina/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Mitocondrias Musculares/metabolismo
3.
iScience ; 26(3): 106189, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36895649

RESUMEN

Peripheral neuropathy, which can include axonal degeneration and/or demyelination, impacts adipose tissues with obesity, diabetes, and aging. However, the presence of demyelinating neuropathy had not yet been explored in adipose. Both demyelinating neuropathies and axonopathies implicate Schwann cells (SCs), a glial support cell that myelinates axons and contributes to nerve regeneration after injury. We performed a comprehensive assessment of SCs and myelination patterns of subcutaneous white adipose tissue (scWAT) nerves, and changes across altered energy balance states. We found that mouse scWAT contains both myelinated and unmyelinated nerves and is populated by SCs, including SCs that were associated with synaptic vesicle-containing nerve terminals. BTBR ob/ob mice, a model of diabetic peripheral neuropathy, exhibited small fiber demyelinating neuropathy and alterations in SC marker gene expression in adipose that were similar to obese human adipose. These data indicate that adipose SCs regulate the plasticity of tissue nerves and become dysregulated in diabetes.

4.
STAR Protoc ; 4(1): 102054, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853719

RESUMEN

Automated single-cell dispensing is incompatible with white adipose tissue (WAT) due to lipid-laden adipocytes. Single-nuclei RNA-Seq permits transcriptional profiling of all cells from WAT. Human WAT faces unique technical challenges in isolating nuclei compared to rodent tissue due to greater extra-cellular matrix content and larger lipid droplets. In this protocol, we detail how to isolate nuclei from frozen subcutaneous human WAT for single-nuclei RNA-Seq. For complete information on the generation and use of this protocol, please refer to Whytock et al. (2022).1.


Asunto(s)
Tejido Adiposo Blanco , Grasa Subcutánea , Humanos , Núcleo Celular/genética , Adipocitos , RNA-Seq
5.
Am J Physiol Cell Physiol ; 323(2): C606-C616, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35785986

RESUMEN

The impact of aerobic training on human skeletal muscle cell (HSkMC) mitochondrial metabolism is a significant research gap, critical to understanding the mechanisms by which exercise augments skeletal muscle metabolism. We therefore assessed mitochondrial content and capacity in fully differentiated CD56+ HSkMCs from lean active (LA) and sedentary individuals with obesity (OS) at baseline, as well as lean/overweight sedentary individuals (LOS) at baseline and following an 18-day aerobic training intervention. Participants had in vivo skeletal muscle PCr recovery rate by 31P-MRS (mitochondrial oxidative kinetics) and cardiorespiratory fitness (V̇o2max) assessed at baseline. Biopsies of the vastus lateralis were performed for the isolation of skeletal muscle stem cells. LOS individuals repeated all assessments posttraining. HSkMCs were evaluated for mitochondrial respiratory capacity by high-resolution respirometry. Data were normalized to two indices of mitochondrial content (CS activity and OXPHOS protein expression) and a marker of total cell count (quantity of DNA). LA individuals had significantly higher V̇o2max than OS and LOS-Pre training; however, no differences were observed in skeletal muscle mitochondrial capacity, nor in carbohydrate- or fatty acid-supported HSkMC respiratory capacity. Aerobic training robustly increased in vivo skeletal muscle mitochondrial capacity of LOS individuals, as well as carbohydrate-supported HSkMC respiratory capacity. Indices of mitochondrial content and total cell count were similar among the groups and did not change with aerobic training. Our findings demonstrate that bioenergetic changes induced with aerobic training in skeletal muscle in vivo are retained in HSkMCs in vitro without impacting mitochondrial content, suggesting that training improves intrinsic skeletal muscle mitochondrial capacity.


Asunto(s)
Mitocondrias Musculares , Músculo Esquelético , Carbohidratos , Ejercicio Físico/fisiología , Humanos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Células Madre
6.
Physiol Rep ; 8(12): e14416, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32562350

RESUMEN

Exercise training and physical activity are known to be associated with high mitochondrial content and oxidative capacity in skeletal muscle. Metabolic diseases including obesity and insulin resistance are associated with low mitochondrial capacity in skeletal muscle. Certain transcriptional factors such as PGC-1α are known to mediate the exercise response; however, the precise molecular mechanisms involved in the adaptation to exercise are not completely understood. We performed multiple measurements of mitochondrial capacity both in vivo and ex vivo in lean or overweight individuals before and after an 18-day aerobic exercise training regimen. These results were compared to lean, active individuals. Aerobic training in these individuals resulted in a marked increase in mitochondrial oxidative respiratory capacity without an appreciable increase in mitochondrial content. These adaptations were associated with robust transcriptome changes. This work also identifies the Tribbles pseudokinase 1, TRIB1, as a potential mediator of the exercise response in human skeletal muscle.


Asunto(s)
Ejercicio Físico/fisiología , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Adulto , Peso Corporal , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Consumo de Oxígeno/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética
7.
Physiol Genomics ; 51(11): 586-595, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31588872

RESUMEN

The effects of exercise training on the skeletal muscle (SKM) lipidome and mitochondrial function have not been thoroughly explored in individuals with Type 2 diabetes (T2D). We hypothesize that 10 wk of supervised endurance training improves SKM mitochondrial function and insulin sensitivity that are related to alterations in lipid signatures within SKM of T2D (males n = 8). We employed integrated multi-omics data analyses including ex vivo lipidomics (MS/MS-shotgun) and transcriptomics (RNA-Seq). From biopsies of SKM, tissue and primary myotubes mitochondrial respiration were quantified by high-resolution respirometry. We also performed hyperinsulinemic-euglycemic clamps and blood draws before and after the training. The lipidomics analysis revealed that endurance training (>95% compliance) increased monolysocardiolipin by 68.2% (P ≤ 0.03), a putative marker of mitochondrial remodeling, and reduced total sphingomyelin by 44.8% (P ≤ 0.05) and phosphatidylserine by 39.7% (P ≤ 0.04) and tended to reduce ceramide lipid content by 19.8%. Endurance training also improved intrinsic mitochondrial respiration in SKM of T2D without alterations in mitochondrial DNA copy number or cardiolipin content. RNA-Seq revealed 71 transcripts in SKM of T2D that were differentially regulated. Insulin sensitivity was unaffected, and HbA1c levels moderately increased by 7.3% despite an improvement in cardiorespiratory fitness (V̇o2peak) following the training intervention. In summary, endurance training improves intrinsic and cell-autonomous SKM mitochondrial function and modifies lipid composition in men with T2D independently of alterations in insulin sensitivity and glycemic control.


Asunto(s)
Respiración de la Célula/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Entrenamiento Aeróbico , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosfolípidos/análisis , Diabetes Mellitus Tipo 2/sangre , Hemoglobina Glucada/análisis , Humanos , Resistencia a la Insulina/fisiología , Lipidómica/métodos , Masculino , Persona de Mediana Edad , Fosfolípidos/metabolismo , Transcriptoma
8.
JCI Insight ; 3(15)2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089714

RESUMEN

Little is known about the biological function of histone deacetylase 11 (HDAC11), which is the lone class IV HDAC. Here, we demonstrate that deletion of HDAC11 in mice stimulates brown adipose tissue (BAT) formation and beiging of white adipose tissue (WAT). Consequently, HDAC11-deficient mice exhibit enhanced thermogenic potential and, in response to high-fat feeding, attenuated obesity, improved insulin sensitivity, and reduced hepatic steatosis. Ex vivo and cell-based assays revealed that HDAC11 catalytic activity suppresses the BAT transcriptional program, in both the basal state and in response to ß-adrenergic receptor signaling, through a mechanism that is dependent on physical association with BRD2, a bromodomain and extraterminal (BET) acetyl-histone-binding protein. These findings define an epigenetic pathway for the regulation of energy homeostasis and suggest the potential for HDAC11-selective inhibitors for the treatment of obesity and diabetes.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Hígado Graso/patología , Histona Desacetilasas/metabolismo , Obesidad/patología , Termogénesis/genética , Factores de Transcripción/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Metabolismo Energético/genética , Epigénesis Genética/fisiología , Hígado Graso/genética , Femenino , Regulación de la Expresión Génica/fisiología , Histona Desacetilasas/genética , Humanos , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Obesidad/genética
9.
Obesity (Silver Spring) ; 24(12): 2467-2470, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27804230

RESUMEN

OBJECTIVE: Exercise training (training) effects on white adipose tissue (WAT) thermogenic and oxidative capacities in humans are inconclusive. This study aimed to investigate whether an active lifestyle is characterized by thermogenic and/or oxidative transcriptional markers in human WAT. METHODS: In vivo maximal muscle ATP synthetic rates (ATPmax) were measured by 31 P-MRS, body composition by DXA, and peak oxygen uptake (VO2 peak) by cycle ergometry in active (n = 7) and sedentary (SED) individuals before and after 3 weeks of training (n = 9, SED only). mRNA expressions of brown adipose and ß-oxidation markers, as well as mitochondrial DNA content (mtDNA), were measured by qRT-PCR and qPCR, respectively, in WAT. RESULTS: ATPmax and VO2 peak were higher in active versus SED individuals. Following training in SED individuals, ATPmax and VO2 peak increased. Proliferator-activated receptor gamma coactivator-1α and carnitine palmitoyltransferase-1ß gene expressions and mtDNA content were significantly higher in WAT of active versus SED individuals before training. mRNA contents of brown and beige-specific markers were not different between cohorts. Training effectively increased ATPmax and VO2 peak but had no effect on mtDNA content or expressions of genes that regulate thermogenic and oxidative capacities in WAT. CONCLUSIONS: Results indicate that an active lifestyle is characterized by elevated mitochondrial content and oxidative, not thermogenic, markers of WAT.


Asunto(s)
Ejercicio Físico , Mitocondrias , Grasa Subcutánea Abdominal/metabolismo , Adenosina Trifosfato/análisis , Tejido Adiposo Pardo/química , Tejido Adiposo Blanco/metabolismo , Adiposidad , Composición Corporal , Carnitina O-Palmitoiltransferasa/metabolismo , ADN Mitocondrial/análisis , Humanos , Estilo de Vida , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Obesidad/metabolismo , Oxidación-Reducción , Consumo de Oxígeno , ARN Mensajero/análisis , Grasa Subcutánea Abdominal/química , Grasa Subcutánea Abdominal/ultraestructura , Termogénesis/genética
10.
Mol Cell Biol ; 28(19): 5951-64, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18678646

RESUMEN

Although genomic technologies have advanced the characterization of gene regulatory networks downstream of transcription factors, the identification of pathways upstream of these transcription factors has been more challenging. In this study we present a gene signature-based approach for connecting signaling pathways to transcription factors, as exemplified by p73. We generated a p73 gene signature by integrating whole-genome chromatin immunoprecipitation and expression profiling. The p73 signature was linked to corresponding signatures produced by drug candidates, using the in silico Connectivity Map resource, to identify drugs that would induce p73 activity. Of the pharmaceutical agents identified, there was enrichment for direct or indirect inhibitors of mammalian Target of Rapamycin (mTOR) signaling. Treatment of both primary cells and cancer cell lines with rapamycin, metformin, and pyrvinium resulted in an increase in p73 levels, as did RNA interference-mediated knockdown of mTOR. Further, a subset of genes associated with insulin response or autophagy exhibited mTOR-mediated, p73-dependent expression. Thus, downstream gene signatures can be used to identify upstream regulators of transcription factor activity, and in doing so, we identified a new link between mTOR, p73, and p73-regulated genes associated with autophagy and metabolic pathways.


Asunto(s)
Proteínas de Unión al ADN/genética , Genómica/métodos , Proteínas Nucleares/genética , Proteínas Quinasas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Línea Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Serina-Treonina Quinasas TOR , Proteína Tumoral p73 , Proteínas Supresoras de Tumor/metabolismo
11.
J Biol Chem ; 282(18): 13906-16, 2007 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-17353190

RESUMEN

To better understand how glucokinase (GK) missense mutations associated with human glycemic diseases perturb glucose homeostasis, we generated and characterized mice with either an activating (A456V) or inactivating (K414E) mutation in the gk gene. Animals with these mutations exhibited alterations in their blood glucose concentration that were inversely related to the relative activity index of GK. Moreover, the threshold for glucose-stimulated insulin secretion from islets with either the activating or inactivating mutation were left- or right-shifted, respectively. However, we were surprised to find that mice with the activating mutation had markedly reduced amounts of hepatic GK activity. Further studies of bacterially expressed mutant enzymes revealed that GK(A456V) is as stable as the wild type enzyme, whereas GK(K414E) is thermolabile. However, the ability of GK regulatory protein to inhibit GK(A456V) was found to be less than that of the wild type enzyme, a finding consistent with impaired hepatic nuclear localization. Taken together, this study indicates that it is necessary to have knowledge of both thermolability and the interactions of mutant GK enzymes with GK regulatory protein when attempting to predict in vivo glycemic phenotypes based on the measurement of enzyme kinetics.


Asunto(s)
Glucemia/metabolismo , Proteínas Portadoras/metabolismo , Glucoquinasa/metabolismo , Trastornos del Metabolismo de la Glucosa/enzimología , Hígado/enzimología , Mutación Missense , Proteínas Adaptadoras Transductoras de Señales , Sustitución de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Activación Enzimática/genética , Estabilidad de Enzimas/genética , Glucoquinasa/química , Glucoquinasa/genética , Trastornos del Metabolismo de la Glucosa/genética , Trastornos del Metabolismo de la Glucosa/patología , Calor , Insulina/metabolismo , Secreción de Insulina , Péptidos y Proteínas de Señalización Intracelular , Hígado/patología , Ratones , Ratones Mutantes , Ratones Transgénicos , Fenotipo , Unión Proteica/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Mol Endocrinol ; 19(5): 1343-60, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15650027

RESUMEN

Chronic exposure of pancreatic beta-cells to elevated glucose reduces insulin gene promoter activity, and this is associated with diminished binding of two beta-cell-enriched transcription factors, Pdx-1 and MafA. In this study using INS-1 beta-cells, overexpression of MafA, but not Pdx-1, was able to restore expression of a human insulin reporter gene (-327 to +30 bp) suppressed by elevated glucose. At issue, however, was that MafA also markedly stimulated an insulin reporter gene (-230 to +30 bp) that was only marginally suppressed by glucose, suggesting that glucose-mediated suppression of the insulin promoter involved elements upstream of -230. Using serial truncations and mini-enhancer constructs of the human insulin promoter, the majority of glucose suppression was localized to regulatory elements between -327 and -261. Nuclear extracts from INS-1 cells exposed to elevated glucose had reduced binding activities to the A5/core (-319 to -307), and to a palindrome (-284 to -267) and an E box (-273 to -257, E3) contained within the Z element. The A5/core binding complex was determined to contain MafA, Pdx-1, and an A2-like binding factor. Two mini-enhancer constructs containing the A5/core were suppressed by glucose and strongly activated by MafA. Glucose-mediated suppression of the Z mini-enhancer was not attenuated by overexpression of MafA or Pdx-1. Site-directed mutation of the A5/core, palindrome, and E3 elements attenuated glucose-mediated suppression. These data indicate that glucose suppression of human insulin promoter activity in INS-1 cells involves reduced binding of MafA to the A5/core. Changes in nuclear factor binding to the Z element, which functions as a strong activator element in primary islets and a negative regulatory element in simian virus 40 or T antigen transformed beta-cell lines, also participate in glucose suppression of insulin promoter activity.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Glucosa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Regiones Promotoras Genéticas , Región de Flanqueo 5' , Animales , Elementos de Facilitación Genéticos , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/genética , Factores de Transcripción Maf de Gran Tamaño , Ratas , Transactivadores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA