Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Virchows Arch ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39107524

RESUMEN

The aim of the present study was to develop and validate a quantitative image analysis (IA) algorithm to aid pathologists in assessing bright-field HER2 in situ hybridization (ISH) tests in solid cancers. A cohort of 80 sequential cases (40 HER2-negative and 40 HER2-positive) were evaluated for HER2 gene amplification with bright-field ISH. We developed an IA algorithm using the ISH Module from HALO software to automatically quantify HER2 and CEP17 copy numbers per cell as well as the HER2/CEP17 ratio. We observed a high correlation of HER2/CEP17 ratio, an average of HER2 and CEP17 copy number per cell between visual and IA quantification (Pearson's correlation coefficient of 0.842, 0.916, and 0.765, respectively). IA was able to count from 124 cells to 47,044 cells (median of 5565 cells). The margin of error for the visual quantification of the HER2/CEP17 ratio and of the average of HER2 copy number per cell decreased from a median of 0.23 to 0.02 and from a median of 0.49 to 0.04, respectively, in IA. Curve estimation regression models showed that a minimum of 469 or 953 invasive cancer cells per case is needed to reach an average margin of error below 0.1 for the HER2/CEP17 ratio or for the average of HER2 copy number per cell, respectively. Lastly, on average, a case took 212.1 s to execute the IA, which means that it evaluates about 130 cells/s and requires 6.7 s/mm2. The concordance of the IA software with the visual scoring was 95%, with a sensitivity of 90% and a specificity of 100%. All four discordant cases were able to achieve concordant results after the region of interest adjustment. In conclusion, this validation study underscores the usefulness of IA in HER2 ISH testing, displaying excellent concordance with visual scoring and significantly reducing margins of error.

2.
Inquiry ; 58: 469580211018293, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34105420

RESUMEN

The present work suggests research and innovation on the topic of dental education after the COVID-19 pandemic, is highly justified and could lead to a step change in dental practice. The challenge for the future in dentistry education should be revised with the COVID-19 and the possibility for future pandemics, since in most countries dental students stopped attending the dental faculties as there was a general lockdown of the population. The dental teaching has an important curriculum in the clinic where patients attend general dentistry practice. However, with SARS-CoV-2 virus, people may be reluctant having a dental treatment were airborne transmission can occur in some dental procedures. In preclinical dental education, the acquisition of clinical, technical skills, and the transfer of these skills to the clinic are extremely important. Therefore, dental education has to adapt the curriculum to embrace new technology devices, instrumentations systems, haptic systems, simulation based training, 3D printer machines, to permit validation and calibration of the technical skills of dental students.


Asunto(s)
COVID-19/epidemiología , Educación en Odontología/tendencias , Educación a Distancia/tendencias , Pautas de la Práctica en Odontología/tendencias , Curriculum/tendencias , Odontología/tendencias , Economía en Odontología/tendencias , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA