Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pathol Inform ; 15: 100381, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38953042

RESUMEN

The Gleason score is an important predictor of prognosis in prostate cancer. However, its subjective nature can result in over- or under-grading. Our objective was to train an artificial intelligence (AI)-based algorithm to grade prostate cancer in specimens from patients who underwent radical prostatectomy (RP) and to assess the correlation of AI-estimated proportions of different Gleason patterns with biochemical recurrence-free survival (RFS), metastasis-free survival (MFS), and overall survival (OS). Training and validation of algorithms for cancer detection and grading were completed with three large datasets containing a total of 580 whole-mount prostate slides from 191 RP patients at two centers and 6218 annotated needle biopsy slides from the publicly available Prostate Cancer Grading Assessment dataset. A cancer detection model was trained using MobileNetV3 on 0.5 mm × 0.5 mm cancer areas (tiles) captured at 10× magnification. For cancer grading, a Gleason pattern detector was trained on tiles using a ResNet50 convolutional neural network and a selective CutMix training strategy involving a mixture of real and artificial examples. This strategy resulted in improved model generalizability in the test set compared with three different control experiments when evaluated on both needle biopsy slides and whole-mount prostate slides from different centers. In an additional test cohort of RP patients who were clinically followed over 30 years, quantitative Gleason pattern AI estimates achieved concordance indexes of 0.69, 0.72, and 0.64 for predicting RFS, MFS, and OS times, outperforming the control experiments and International Society of Urological Pathology system (ISUP) grading by pathologists. Finally, unsupervised clustering of test RP patient specimens into low-, medium-, and high-risk groups based on AI-estimated proportions of each Gleason pattern resulted in significantly improved RFS and MFS stratification compared with ISUP grading. In summary, deep learning-based quantitative Gleason scoring using a selective CutMix training strategy may improve prognostication after prostate cancer surgery.

2.
Abdom Radiol (NY) ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958754

RESUMEN

OBJECTIVE: To assess impact of image quality on prostate cancer extraprostatic extension (EPE) detection on MRI using a deep learning-based AI algorithm. MATERIALS AND METHODS: This retrospective, single institution study included patients who were imaged with mpMRI and subsequently underwent radical prostatectomy from June 2007 to August 2022. One genitourinary radiologist prospectively evaluated each patient using the NCI EPE grading system. Each T2WI was classified as low- or high-quality by a previously developed AI algorithm. Fisher's exact tests were performed to compare EPE detection metrics between low- and high-quality images. Univariable and multivariable analyses were conducted to assess the predictive value of image quality for pathological EPE. RESULTS: A total of 773 consecutive patients (median age 61 [IQR 56-67] years) were evaluated. At radical prostatectomy, 23% (180/773) of patients had EPE at pathology, and 41% (131/318) of positive EPE calls on mpMRI were confirmed to have EPE. The AI algorithm classified 36% (280/773) of T2WIs as low-quality and 64% (493/773) as high-quality. For EPE grade ≥ 1, high-quality T2WI significantly improved specificity for EPE detection (72% [95% CI 67-76%] vs. 63% [95% CI 56-69%], P = 0.03), but did not significantly affect sensitivity (72% [95% CI 62-80%] vs. 75% [95% CI 63-85%]), positive predictive value (44% [95% CI 39-49%] vs. 38% [95% CI 32-43%]), or negative predictive value (89% [95% CI 86-92%] vs. 89% [95% CI 85-93%]). Sensitivity, specificity, PPV, and NPV for EPE grades ≥ 2 and ≥ 3 did not show significant differences attributable to imaging quality. For NCI EPE grade 1, high-quality images (OR 3.05, 95% CI 1.54-5.86; P < 0.001) demonstrated a stronger association with pathologic EPE than low-quality images (OR 1.76, 95% CI 0.63-4.24; P = 0.24). CONCLUSION: Our study successfully employed a deep learning-based AI algorithm to classify image quality of prostate MRI and demonstrated that better quality T2WI was associated with more accurate prediction of EPE at final pathology.

3.
Oncotarget ; 15: 288-300, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712741

RESUMEN

PURPOSE: Sequential PET/CT studies oncology patients can undergo during their treatment follow-up course is limited by radiation dosage. We propose an artificial intelligence (AI) tool to produce attenuation-corrected PET (AC-PET) images from non-attenuation-corrected PET (NAC-PET) images to reduce need for low-dose CT scans. METHODS: A deep learning algorithm based on 2D Pix-2-Pix generative adversarial network (GAN) architecture was developed from paired AC-PET and NAC-PET images. 18F-DCFPyL PSMA PET-CT studies from 302 prostate cancer patients, split into training, validation, and testing cohorts (n = 183, 60, 59, respectively). Models were trained with two normalization strategies: Standard Uptake Value (SUV)-based and SUV-Nyul-based. Scan-level performance was evaluated by normalized mean square error (NMSE), mean absolute error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). Lesion-level analysis was performed in regions-of-interest prospectively from nuclear medicine physicians. SUV metrics were evaluated using intraclass correlation coefficient (ICC), repeatability coefficient (RC), and linear mixed-effects modeling. RESULTS: Median NMSE, MAE, SSIM, and PSNR were 13.26%, 3.59%, 0.891, and 26.82, respectively, in the independent test cohort. ICC for SUVmax and SUVmean were 0.88 and 0.89, which indicated a high correlation between original and AI-generated quantitative imaging markers. Lesion location, density (Hounsfield units), and lesion uptake were all shown to impact relative error in generated SUV metrics (all p < 0.05). CONCLUSION: The Pix-2-Pix GAN model for generating AC-PET demonstrates SUV metrics that highly correlate with original images. AI-generated PET images show clinical potential for reducing the need for CT scans for attenuation correction while preserving quantitative markers and image quality.


Asunto(s)
Aprendizaje Profundo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Persona de Mediana Edad , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Radiofármacos , Reproducibilidad de los Resultados
4.
Radiology ; 311(2): e230750, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38713024

RESUMEN

Background Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required. Purpose To evaluate a biparametric MRI AI algorithm for intraprostatic lesion detection and segmentation and to compare its performance with radiologist readings and biopsy results. Materials and Methods This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion-guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC). Results A total of 658 male participants (median age, 67 years [IQR, 61-71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294; 95% CI: 96%, 99%; P = .23). The algorithm identified 84% (103 of 122), 96% (152 of 159), 96% (47 of 49), 95% (38 of 40), and 98% (45 of 46) of participants with ISUP GG 1, 2, 3, 4, and 5 lesions, respectively. In the lesion-level analysis using radiologist ground truth, the detection sensitivity was 55% (569 of 1029; 95% CI: 52%, 58%), and the PPV was 57% (535 of 934; 95% CI: 54%, 61%). The mean number of false-positive lesions per participant was 0.61 (range, 0-3). The lesion segmentation DSC was 0.29. Conclusion The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination. ClinicalTrials.gov Identifier: NCT03354416 © RSNA, 2024 Supplemental material is available for this article.


Asunto(s)
Aprendizaje Profundo , Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Anciano , Estudios Prospectivos , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Persona de Mediana Edad , Algoritmos , Próstata/diagnóstico por imagen , Próstata/patología , Biopsia Guiada por Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos
5.
Clin Nucl Med ; 49(7): 630-636, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651785

RESUMEN

PURPOSE: Prostate-specific membrane antigen (PSMA)-targeting PET radiotracers reveal physiologic uptake in the urinary system, potentially misrepresenting activity in the prostatic urethra as an intraprostatic lesion. This study examined the correlation between midline 18 F-DCFPyL activity in the prostate and hyperintensity on T2-weighted (T2W) MRI as an indication of retained urine in the prostatic urethra. PATIENTS AND METHODS: Eighty-five patients who underwent both 18 F-DCFPyL PSMA PET/CT and prostate MRI between July 2017 and September 2023 were retrospectively analyzed for midline radiotracer activity and retained urine on postvoid T2W MRIs. Fisher's exact tests and unpaired t tests were used to compare residual urine presence and prostatic urethra measurements between patients with and without midline radiotracer activity. The influence of anatomical factors including prostate volume and urethral curvature on urinary stagnation was also explored. RESULTS: Midline activity on PSMA PET imaging was seen in 14 patients included in the case group, whereas the remaining 71 with no midline activity constituted the control group. A total of 71.4% (10/14) and 29.6% (21/71) of patients in the case and control groups had urethral hyperintensity on T2W MRI, respectively ( P < 0.01). Patients in the case group had significantly larger mean urethral dimensions, larger prostate volumes, and higher incidence of severe urethral curvature compared with the controls. CONCLUSIONS: Stagnated urine within the prostatic urethra is a potential confounding factor on PSMA PET scans. Integrating PET imaging with T2W MRI can mitigate false-positive calls, especially as PSMA PET/CT continues to gain traction in diagnosing localized prostate cancer.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Uretra , Humanos , Masculino , Reacciones Falso Positivas , Anciano , Uretra/diagnóstico por imagen , Persona de Mediana Edad , Estudios Retrospectivos , Lisina/análogos & derivados , Próstata/diagnóstico por imagen , Urea/análogos & derivados , Urea/farmacocinética , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata/diagnóstico por imagen , Antígenos de Superficie , Anciano de 80 o más Años
6.
Acad Radiol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38670874

RESUMEN

RATIONALE AND OBJECTIVES: Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to utilize a deep learning-based AI workflow for automated EPE grading from prostate T2W MRI, ADC map, and High B DWI. MATERIAL AND METHODS: An expert genitourinary radiologist conducted prospective clinical assessments of MRI scans for 634 patients and assigned risk for EPE using a grading technique. The training set and held-out independent test set consisted of 507 patients and 127 patients, respectively. Existing deep-learning AI models for prostate organ and lesion segmentation were leveraged to extract area and distance features for random forest classification models. Model performance was evaluated using balanced accuracy, ROC AUCs for each EPE grade, as well as sensitivity, specificity, and accuracy compared to EPE on histopathology. RESULTS: A balanced accuracy score of .390 ± 0.078 was achieved using a lesion detection probability threshold of 0.45 and distance features. Using the test set, ROC AUCs for AI-assigned EPE grades 0-3 were 0.70, 0.65, 0.68, and 0.55 respectively. When using EPE≥ 1 as the threshold for positive EPE, the model achieved a sensitivity of 0.67, specificity of 0.73, and accuracy of 0.72 compared to radiologist sensitivity of 0.81, specificity of 0.62, and accuracy of 0.66 using histopathology as the ground truth. CONCLUSION: Our AI workflow for assigning imaging-based EPE grades achieves an accuracy for predicting histologic EPE approaching that of physicians. This automated workflow has the potential to enhance physician decision-making for assessing the risk of EPE in patients undergoing treatment for prostate cancer due to its consistency and automation.

7.
Abdom Radiol (NY) ; 49(5): 1545-1556, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38512516

RESUMEN

OBJECTIVE: Automated methods for prostate segmentation on MRI are typically developed under ideal scanning and anatomical conditions. This study evaluates three different prostate segmentation AI algorithms in a challenging population of patients with prior treatments, variable anatomic characteristics, complex clinical history, or atypical MRI acquisition parameters. MATERIALS AND METHODS: A single institution retrospective database was queried for the following conditions at prostate MRI: prior prostate-specific oncologic treatment, transurethral resection of the prostate (TURP), abdominal perineal resection (APR), hip prosthesis (HP), diversity of prostate volumes (large ≥ 150 cc, small ≤ 25 cc), whole gland tumor burden, magnet strength, noted poor quality, and various scanners (outside/vendors). Final inclusion criteria required availability of axial T2-weighted (T2W) sequence and corresponding prostate organ segmentation from an expert radiologist. Three previously developed algorithms were evaluated: (1) deep learning (DL)-based model, (2) commercially available shape-based model, and (3) federated DL-based model. Dice Similarity Coefficient (DSC) was calculated compared to expert. DSC by model and scan factors were evaluated with Wilcox signed-rank test and linear mixed effects (LMER) model. RESULTS: 683 scans (651 patients) met inclusion criteria (mean prostate volume 60.1 cc [9.05-329 cc]). Overall DSC scores for models 1, 2, and 3 were 0.916 (0.707-0.971), 0.873 (0-0.997), and 0.894 (0.025-0.961), respectively, with DL-based models demonstrating significantly higher performance (p < 0.01). In sub-group analysis by factors, Model 1 outperformed Model 2 (all p < 0.05) and Model 3 (all p < 0.001). Performance of all models was negatively impacted by prostate volume and poor signal quality (p < 0.01). Shape-based factors influenced DL models (p < 0.001) while signal factors influenced all (p < 0.001). CONCLUSION: Factors affecting anatomical and signal conditions of the prostate gland can adversely impact both DL and non-deep learning-based segmentation models.


Asunto(s)
Algoritmos , Inteligencia Artificial , Imagen por Resonancia Magnética , Neoplasias de la Próstata , Humanos , Masculino , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Interpretación de Imagen Asistida por Computador/métodos , Persona de Mediana Edad , Anciano , Próstata/diagnóstico por imagen , Aprendizaje Profundo
8.
Eur Urol ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38556436

RESUMEN

BACKGROUND AND OBJECTIVE: The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations standardise the reporting of prostate magnetic resonance imaging (MRI) in patients on active surveillance (AS) for prostate cancer. An international consensus group recently updated these recommendations and identified the areas of uncertainty. METHODS: A panel of 38 experts used the formal RAND/UCLA Appropriateness Method consensus methodology. Panellists scored 193 statements using a 1-9 agreement scale, where 9 means full agreement. A summary of agreement, uncertainty, or disagreement (derived from the group median score) and consensus (determined using the Interpercentile Range Adjusted for Symmetry method) was calculated for each statement and presented for discussion before individual rescoring. KEY FINDINGS AND LIMITATIONS: Participants agreed that MRI scans must meet a minimum image quality standard (median 9) or be given a score of 'X' for insufficient quality. The current scan should be compared with both baseline and previous scans (median 9), with the PRECISE score being the maximum from any lesion (median 8). PRECISE 3 (stable MRI) was subdivided into 3-V (visible) and 3-NonV (nonvisible) disease (median 9). Prostate Imaging Reporting and Data System/Likert ≥3 lesions should be measured on T2-weighted imaging, using other sequences to aid in the identification (median 8), and whenever possible, reported pictorially (diagrams, screenshots, or contours; median 9). There was no consensus on how to measure tumour size. More research is needed to determine a significant size increase (median 9). PRECISE 5 was clarified as progression to stage ≥T3a (median 9). CONCLUSIONS AND CLINICAL IMPLICATIONS: The updated PRECISE recommendations reflect expert consensus opinion on minimal standards and reporting criteria for prostate MRI in AS. PATIENT SUMMARY: The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations are used in clinical practice and research to guide the interpretation and reporting of magnetic resonance imaging for patients on active surveillance for prostate cancer. An international panel has updated these recommendations, clarified the areas of uncertainty, and highlighted the areas for further research.

9.
Eur Urol Open Sci ; 62: 74-80, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38468864

RESUMEN

Background and objective: Focal therapy (FT) is increasingly recognized as a promising approach for managing localized prostate cancer (PCa), notably reducing treatment-related morbidities. However, post-treatment anatomical changes present significant challenges for surveillance using current imaging techniques. This study aimed to evaluate the inter-reader agreement and efficacy of the Prostate Imaging after Focal Ablation (PI-FAB) scoring system in detecting clinically significant prostate cancer (csPCa) on post-FT multiparametric magnetic resonance imaging (mpMRI). Methods: A retrospective cohort study was conducted involving patients who underwent primary FT for localized csPCa between 2013 and 2023, followed by post-FT mpMRI and a prostate biopsy. Two expert genitourinary radiologists retrospectively evaluated post-FT mpMRI using PI-FAB. The key measures included inter-reader agreement of PI-FAB scores, assessed by quadratic weighted Cohen's kappa (κ), and the system's efficacy in predicting in-field recurrence of csPCa, with a PI-FAB score cutoff of 3. Additional diagnostic metrics including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and overall accuracy were also evaluated. Key findings and limitations: Scans from 38 patients were analyzed, revealing a moderate level of agreement in PI-FAB scoring (κ = 0.56). Both radiologists achieved sensitivity of 93% in detecting csPCa, although specificity, PPVs, NPVs, and accuracy varied. Conclusions and clinical implications: The PI-FAB scoring system exhibited high sensitivity with moderate inter-reader agreement in detecting in-field recurrence of csPCa. Despite promising results, its low specificity and PPV necessitate further refinement. These findings underscore the need for larger studies to validate the clinical utility of PI-FAB, potentially aiding in standardizing post-treatment surveillance. Patient summary: Focal therapy has emerged as a promising approach for managing localized prostate cancer, but limitations in current imaging techniques present significant challenges for post-treatment surveillance. The Prostate Imaging after Focal Ablation (PI-FAB) scoring system showed high sensitivity for detecting in-field recurrence of clinically significant prostate cancer. However, its low specificity and positive predictive value necessitate further refinement. Larger, more comprehensive studies are needed to fully validate its clinical utility.

10.
medRxiv ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38370835

RESUMEN

Patients diagnosed with localized high-risk prostate cancer have higher rates of recurrence, and the introduction of neoadjuvant intensive hormonal therapies seeks to treat occult micrometastatic disease by their addition to definitive treatment. Sufficient profiling of baseline disease has remained a challenge in enabling the in-depth assessment of phenotypes associated with exceptional vs. poor pathologic responses after treatment. In this study, we report comprehensive and integrative gene expression profiling of 37 locally advanced prostate tumors prior to six months of androgen deprivation therapy (ADT) plus the androgen receptor (AR) inhibitor enzalutamide prior to radical prostatectomy. A robust transcriptional program associated with HER2 activity was positively associated with poor outcome and opposed AR activity, even after adjusting for common genomic alterations in prostate cancer including PTEN loss and expression of the TMPRSS2:ERG fusion. Patients experiencing exceptional pathologic responses demonstrated lower levels of HER2 and phospho-HER2 by immunohistochemistry of biopsy tissues. The inverse correlation of AR and HER2 activity was found to be a universal feature of all aggressive prostate tumors, validated by transcriptional profiling an external cohort of 121 patients and immunostaining of tumors from 84 additional patients. Importantly, the AR activity-low, HER2 activity-high cells that resist ADT are a pre-existing subset of cells that can be targeted by HER2 inhibition alone or in combination with enzalutamide. In summary, we show that prostate tumors adopt an AR activity-low prior to antiandrogen exposure that can be exploited by treatment with HER2 inhibitors.

11.
Acad Radiol ; 31(6): 2424-2433, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38262813

RESUMEN

RATIONALE AND OBJECTIVES: Efficiently detecting and characterizing metastatic bone lesions on staging CT is crucial for prostate cancer (PCa) care. However, it demands significant expert time and additional imaging such as PET/CT. We aimed to develop an ensemble of two automated deep learning AI models for 1) bone lesion detection and segmentation and 2) benign vs. metastatic lesion classification on staging CTs and to compare its performance with radiologists. MATERIALS AND METHODS: This retrospective study developed two AI models using 297 staging CT scans (81 metastatic) with 4601 benign and 1911 metastatic lesions in PCa patients. Metastases were validated by follow-up scans, bone biopsy, or PET/CT. Segmentation AI (3DAISeg) was developed using the lesion contours delineated by a radiologist. 3DAISeg performance was evaluated with the Dice similarity coefficient, and classification AI (3DAIClass) performance on AI and radiologist contours was assessed with F1-score and accuracy. Training/validation/testing data partitions of 70:15:15 were used. A multi-reader study was performed with two junior and two senior radiologists within a subset of the testing dataset (n = 36). RESULTS: In 45 unseen staging CT scans (12 metastatic PCa) with 669 benign and 364 metastatic lesions, 3DAISeg detected 73.1% of metastatic (266/364) and 72.4% of benign lesions (484/669). Each scan averaged 12 extra segmentations (range: 1-31). All metastatic scans had at least one detected metastatic lesion, achieving a 100% patient-level detection. The mean Dice score for 3DAISeg was 0.53 (median: 0.59, range: 0-0.87). The F1 for 3DAIClass was 94.8% (radiologist contours) and 92.4% (3DAISeg contours), with a median false positive of 0 (range: 0-3). Using radiologist contours, 3DAIClass had PPV and NPV rates comparable to junior and senior radiologists: PPV (semi-automated approach AI 40.0% vs. Juniors 32.0% vs. Seniors 50.0%) and NPV (AI 96.2% vs. Juniors 95.7% vs. Seniors 91.9%). When using 3DAISeg, 3DAIClass mimicked junior radiologists in PPV (pure-AI 20.0% vs. Juniors 32.0% vs. Seniors 50.0%) but surpassed seniors in NPV (pure-AI 93.8% vs. Juniors 95.7% vs. Seniors 91.9%). CONCLUSION: Our lesion detection and classification AI model performs on par with junior and senior radiologists in discerning benign and metastatic lesions on staging CTs obtained for PCa.


Asunto(s)
Neoplasias Óseas , Aprendizaje Profundo , Estadificación de Neoplasias , Neoplasias de la Próstata , Tomografía Computarizada por Rayos X , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Anciano , Persona de Mediana Edad , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
12.
AJR Am J Roentgenol ; 222(1): e2329964, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729551

RESUMEN

BACKGROUND. Precise risk stratification through MRI/ultrasound (US) fusion-guided targeted biopsy (TBx) can guide optimal prostate cancer (PCa) management. OBJECTIVE. The purpose of this study was to compare PI-RADS version 2.0 (v2.0) and PI-RADS version 2.1 (v2.1) in terms of the rates of International Society of Urological Pathology (ISUP) grade group (GG) upgrade and downgrade from TBx to radical prostatectomy (RP). METHODS. This study entailed a retrospective post hoc analysis of patients who underwent 3-T prostate MRI at a single institution from May 2015 to March 2023 as part of three prospective clinical trials. Trial participants who underwent MRI followed by MRI/US fusion-guided TBx and RP within a 1-year interval were identified. A single genitourinary radiologist performed clinical interpretations of the MRI examinations using PI-RADS v2.0 from May 2015 to March 2019 and PI-RADS v2.1 from April 2019 to March 2023. Upgrade and downgrade rates from TBx to RP were compared using chi-square tests. Clinically significant cancer was defined as ISUP GG2 or greater. RESULTS. The final analysis included 308 patients (median age, 65 years; median PSA density, 0.16 ng/mL2). The v2.0 group (n = 177) and v2.1 group (n = 131) showed no significant difference in terms of upgrade rate (29% vs 22%, respectively; p = .15), downgrade rate (19% vs 21%, p = .76), clinically significant upgrade rate (14% vs 10%, p = .27), or clinically significant downgrade rate (1% vs 1%, p > .99). The upgrade rate and downgrade rate were also not significantly different between the v2.0 and v2.1 groups when stratifying by index lesion PI-RADS category or index lesion zone, as well as when assessed only in patients without a prior PCa diagnosis (all p > .01). Among patients with GG2 or GG3 at RP (n = 121 for v2.0; n = 103 for v2.1), the concordance rate between TBx and RP was not significantly different between the v2.0 and v2.1 groups (53% vs 57%, p = .51). CONCLUSION. Upgrade and downgrade rates from TBx to RP were not significantly different between patients whose MRI examinations were clinically interpreted using v2.0 or v2.1. CLINICAL IMPACT. Implementation of the most recent PI-RADS update did not improve the incongruence in PCa grade assessment between TBx and surgery.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Anciano , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Próstata/patología , Estudios Retrospectivos , Estudios Prospectivos , Biopsia , Prostatectomía/métodos , Biopsia Guiada por Imagen/métodos
13.
Acad Radiol ; 31(4): 1429-1437, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37858505

RESUMEN

RATIONALE AND OBJECTIVES: Prostate MRI quality is essential in guiding prostate biopsies. However, assessment of MRI quality is subjective with variation. Quality degradation sources exert varying impacts based on the sequence under consideration, such as T2W versus DWI. As a result, employing sequence-specific techniques for quality assessment could yield more advantageous outcomes. This study aims to develop an AI tool that offers a more consistent evaluation of T2W prostate MRI quality, efficiently identifying suboptimal scans while minimizing user bias. MATERIALS AND METHODS: This retrospective study included 1046 patients from three cohorts (ProstateX [n = 347], All-comer in-house [n = 602], enriched bad-quality MRI in-house [n = 97]) scanned between January 2011 and May 2022. An expert reader assigned T2W MRIs a quality score. A train-validation-test split of 70:15:15 was applied, ensuring equal distribution of MRI scanners and protocols across all partitions. T2W quality AI classification model was based on 3D DenseNet121 architecture using MONAI framework. In addition to multiclassification, binary classification was utilized (Classes 0/1 vs. 2). A score of 0 was given to scans considered non-diagnostic or unusable, a score of 1 was given to those with acceptable diagnostic quality with some usability but with some quality distortions present, and a score of 2 was given to those considered optimal diagnostic quality and usability. Partial occlusion sensitivity maps were generated for anatomical correlation. Three body radiologists assessed reproducibility within a subgroup of 60 test cases using weighted Cohen Kappa. RESULTS: The best validation multiclass accuracy of 77.1% (121/157) was achieved during training. In the test dataset, multiclassification accuracy was 73.9% (116/157), whereas binary accuracy was 84.7% (133/157). Sub-class sensitivity for binary quality distortion classification for class 0 was 100% (18/18), and sub-class specificity for T2W classification of absence/minimal quality distortions for class 2 was 90.5% (95/105). All three readers showed moderate to substantial agreement with ground truth (R1-R3 κ = 0.588, κ = 0.649, κ = 0.487, respectively), moderate to substantial agreement with each other (R1-R2 κ = 0.599, R1-R3 κ = 0.612, R2-R3 κ = 0.685), fair to moderate agreement with AI (R1-R3 κ = 0.445, κ = 0.410, κ = 0.292, respectively). AI showed substantial agreement with ground truth (κ = 0.704). 3D quality heatmap evaluation revealed that the most critical non-diagnostic quality imaging features from an AI perspective related to obscuration of the rectoprostatic space (94.4%, 17/18). CONCLUSION: The 3D AI model can assess T2W prostate MRI quality with moderate accuracy and translate whole sequence-level classification labels into 3D voxel-level quality heatmaps for interpretation. Image quality has a significant downstream impact on ruling out clinically significant cancers. AI may be able to help with reproducible identification of MRI sequences requiring re-acquisition with explainability.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Próstata/patología , Estudios Retrospectivos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología
14.
Acad Radiol ; 31(4): 1419-1428, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37775447

RESUMEN

RATIONALE AND OBJECTIVES: To analyze variables that can predict the positivity of 18F-DCFPyL- positron emission tomography/computed tomography (PET/CT) and extent of disease in patients with biochemically recurrent (BCR) prostate cancer after primary local therapy with either radical prostatectomy or radiation therapy. MATERIALS AND METHODS: This is a retrospective analysis of a prospective single institutional review board-approved study. We included 199 patients with biochemical recurrence and negative conventional imaging after primary local therapies (radical prostatectomy n = 127, radiation therapy n = 72). All patients underwent 18F-DCFPyL-PET/CT. Univariate and multivariate logistic regression analyses were used to determine predictors of a positive scan for both cohort of patients. Regression-based coefficients were used to develop nomograms predicting scan positivity and extra-pelvic disease. Decision curve analysis (DCA) was implemented to quantify nomogram's clinical benefit. RESULTS: Of the 127 (63%) post-radical prostatectomy patients, 91 patients had positive scans - 61 of those with intrapelvic lesions and 30 with extra-pelvic lesions (i.e., retroperitoneal or distant nodes and/or bone/organ lesions). Of the 72 post-radiation therapy patients, 65 patients had positive scans - 39 of them had intrapelvic lesions and 26 extra-pelvic lesions. In the radical prostatectomy cohort, multivariate regression analysis revealed original International Society of Urological Pathology category, prostate-specific antigen (PSA), prostate-specific antigen doubling time (PSAdt), and time from BCR (mo) to scan were predictors for scan positivity and presence of extra-pelvic disease, with an area under the curve of 80% and 78%, respectively. Positive versus negative tumor margin after radical prostatectomy was not related to scan positivity or to the presence of positive extra-pelvic foci. In the radiation therapy cohort, multivariate regression analysis revealed that PSA, PSAdt, and time to BCR (mo) were predictors of extra-pelvic disease, with area under the curve of 82%. Because only seven patients in the radiation therapy cohort had negative scans, a prediction model for scan positivity could not be analyzed and only the presence of extra-pelvic disease was evaluated. CONCLUSION: PSA and PSAdt are consistently significant predictors of 18F-DCFPyL PET/CT positivity and extra-pelvic disease in BCR prostate cancer patients. Stratifying the patient population into primary local treatment group enables the use of other variables as predictors, such as time since BCR. This nomogram may guide selection of the most suitable candidates for 18F-DCFPyL-PET/CT imaging.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Antígeno Prostático Específico , Estudios Retrospectivos , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/patología , Recurrencia Local de Neoplasia/diagnóstico por imagen
15.
Curr Opin Urol ; 34(1): 1-7, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909882

RESUMEN

PURPOSE OF REVIEW: This review aims to highlight the integration of artificial intelligence-powered radiomics in urologic oncology, focusing on the diagnostic and prognostic advancements in the realm of managing prostate, kidney, and bladder cancers. RECENT FINDINGS: As artificial intelligence continues to shape the medical imaging landscape, its integration into the field of urologic oncology has led to impressive results. For prostate cancer diagnostics, machine learning has shown promise in refining clinically-significant lesion detection, with some success in deciphering ambiguous lesions on multiparametric MRI. For kidney cancer, radiomics has emerged as a valuable tool for better distinguishing between benign and malignant renal masses and predicting tumor behavior from CT or MRI scans. Meanwhile, in the arena of bladder cancer, there is a burgeoning emphasis on prediction of muscle invasive cancer and forecasting disease trajectory. However, many studies showing promise in these areas face challenges due to limited sample sizes and the need for broader external validation. SUMMARY: Radiomics integrated with artificial intelligence offers a pioneering approach to urologic oncology, ushering in an era of enhanced diagnostic precision and reduced invasiveness, guiding patient-tailored treatment plans. Researchers must embrace broader, multicentered endeavors to harness the full potential of this field.


Asunto(s)
Neoplasias Renales , Neoplasias de los Músculos , Neoplasias de la Vejiga Urinaria , Neoplasias Urológicas , Urología , Masculino , Humanos , Inteligencia Artificial , Neoplasias Urológicas/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias Renales/diagnóstico por imagen
16.
Eur J Radiol ; 170: 111259, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128256

RESUMEN

PURPOSE: To evaluate CycleGAN's ability to enhance T2-weighted image (T2WI) quality. METHOD: A CycleGAN algorithm was used to enhance T2WI quality. 96 patients (192 scans) were identified from patients who underwent multiple axial T2WI due to poor quality on the first attempt (RAD1) and improved quality on re-acquisition (RAD2). CycleGAN algorithm gave DL classifier scores (0-1) for quality quantification and produced enhanced versions of QI1 and QI2 from RAD1 and RAD2, respectively. A subset (n = 20 patients) was selected for a blinded, multi-reader study, where four radiologists rated T2WI on a scale of 1-4 for quality. The multi-reader study presented readers with 60 image pairs (RAD1 vs RAD2, RAD1 vs QI1, and RAD2 vs QI2), allowing for selecting sequence preferences and quantifying the quality changes. RESULTS: The DL classifier correctly discerned 71.9 % of quality classes, with 90.6 % (96/106) as poor quality and 48.8 % (42/86) as diagnostic in original sequences (RAD1, RAD2). CycleGAN images (QI1, QI2) demonstrated quantitative improvements, with consistently higher DL classifier scores than original scans (p < 0.001). In the multi-reader analysis, CycleGAN demonstrated no qualitative improvements, with diminished overall quality and motion in QI2 in most patients compared to RAD2, with noise levels remaining similar (8/20). No readers preferred QI2 to RAD2 for diagnosis. CONCLUSION: Despite quantitative enhancements with CycleGAN, there was no qualitative boost in T2WI diagnostic quality, noise, or motion. Expert radiologists didn't favor CycleGAN images over standard scans, highlighting the divide between quantitative and qualitative metrics.


Asunto(s)
Aprendizaje Profundo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Imagen por Resonancia Magnética/métodos
17.
J Magn Reson Imaging ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37811666

RESUMEN

BACKGROUND: Image quality evaluation of prostate MRI is important for successful implementation of MRI into localized prostate cancer diagnosis. PURPOSE: To examine the impact of image quality on prostate cancer detection using an in-house previously developed artificial intelligence (AI) algorithm. STUDY TYPE: Retrospective. SUBJECTS: 615 consecutive patients (median age 67 [interquartile range [IQR]: 61-71] years) with elevated serum PSA (median PSA 6.6 [IQR: 4.6-9.8] ng/mL) prior to prostate biopsy. FIELD STRENGTH/SEQUENCE: 3.0T/T2-weighted turbo-spin-echo MRI, high b-value echo-planar diffusion-weighted imaging, and gradient recalled echo dynamic contrast-enhanced. ASSESSMENTS: Scans were prospectively evaluated during clinical readout using PI-RADSv2.1 by one genitourinary radiologist with 17 years of experience. For each patient, T2-weighted images (T2WIs) were classified as high-quality or low-quality based on evaluation of both general distortions (eg, motion, distortion, noise, and aliasing) and perceptual distortions (eg, obscured delineation of prostatic capsule, prostatic zones, and excess rectal gas) by a previously developed in-house AI algorithm. Patients with PI-RADS category 1 underwent 12-core ultrasound-guided systematic biopsy while those with PI-RADS category 2-5 underwent combined systematic and targeted biopsies. Patient-level cancer detection rates (CDRs) were calculated for clinically significant prostate cancer (csPCa, International Society of Urological Pathology Grade Group ≥2) by each biopsy method and compared between high- and low-quality images in each PI-RADS category. STATISTICAL TESTS: Fisher's exact test. Bootstrap 95% confidence intervals (CI). A P value <0.05 was considered statistically significant. RESULTS: 385 (63%) T2WIs were classified as high-quality and 230 (37%) as low-quality by AI. Targeted biopsy with high-quality T2WIs resulted in significantly higher clinically significant CDR than low-quality images for PI-RADS category 4 lesions (52% [95% CI: 43-61] vs. 32% [95% CI: 22-42]). For combined biopsy, there was no significant difference in patient-level CDRs for PI-RADS 4 between high- and low-quality T2WIs (56% [95% CI: 47-64] vs. 44% [95% CI: 34-55]; P = 0.09). DATA CONCLUSION: Higher quality T2WIs were associated with better targeted biopsy clinically significant cancer detection performance for PI-RADS 4 lesions. Combined biopsy might be needed when T2WI is lower quality. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

18.
Eur J Radiol ; 168: 111095, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717420

RESUMEN

OBJECTIVE: To evaluate a biparametric MRI (bpMRI)-based artificial intelligence (AI) model for the detection of local prostate cancer (PCa) recurrence in patients with radiotherapy history. MATERIALS AND METHODS: This study included post-radiotherapy patients undergoing multiparametric MRI and subsequent MRI/US fusion-guided and/or systematic biopsy. Histopathology results were used as ground truth. The recurrent cancer detection sensitivity of a bpMRI-based AI model, which was developed on a large dataset to primarily identify lesions in treatment-naïve patients, was compared to a prospective radiologist assessment using the Wald test. Subanalysis was conducted on patients stratified by the treatment modality (external beam radiation treatment [EBRT] and brachytherapy) and the prostate volume quartiles. RESULTS: Of the 62 patients included (median age = 70 years; median PSA = 3.51 ng/ml; median prostate volume = 27.55 ml), 56 recurrent PCa foci were identified within 46 patients. The AI model detected 40 lesions in 35 patients. The AI model performance was lower than the prospective radiology interpretation (Rad) on a patient-(AI: 76.1% vs. Rad: 91.3%, p = 0.02) and lesion-level (AI: 71.4% vs. Rad: 87.5%, p = 0.01). The mean number of false positives per patient was 0.35 (range: 0-2). The AI model performance was higher in EBRT group both on patient-level (EBRT: 81.5% [22/27] vs. brachytherapy: 68.4% [13/19]) and lesion-level (EBRT: 79.4% [27/34] vs. brachytherapy: 59.1% [13/22]). In patients with gland volumes >34 ml (n = 25), detection sensitivities were 100% (11/11) and 94.1% (16/17) on patient- and lesion-level, respectively. CONCLUSION: The reported bpMRI-based AI model detected the majority of locally recurrent prostate cancer after radiotherapy. Further testing including external validation of this model is warranted prior to clinical implementation.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Masculino , Humanos , Anciano , Próstata/patología , Antígeno Prostático Específico , Estudios Prospectivos , Inteligencia Artificial , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
19.
Prostate ; 83(16): 1519-1528, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37622756

RESUMEN

BACKGROUND: Cribriform (CBFM) pattern on prostate biopsy has been implicated as a predictor for high-risk features, potentially leading to adverse outcomes after definitive treatment. This study aims to investigate whether the CBFM pattern containing prostate cancers (PCa) were associated with false negative magnetic resonance imaging (MRI) and determine the association between MRI and histopathological disease burden. METHODS: Patients who underwent multiparametric magnetic resonance imaging (mpMRI), combined 12-core transrectal ultrasound (TRUS) guided systematic (SB) and MRI/US fusion-guided biopsy were retrospectively queried for the presence of CBFM pattern at biopsy. Biopsy cores and lesions were categorized as follows: C0 = benign, C1 = PCa with no CBFM pattern, C2 = PCa with CBFM pattern. Correlation between cancer core length (CCL) and measured MRI lesion dimension were assessed using a modified Pearson correlation test for clustered data. Differences between the biopsy core groups were assessed with the Wilcoxon-signed rank test with clustering. RESULTS: Between 2015 and 2022, a total of 131 consecutive patients with CBFM pattern on prostate biopsy and pre-biopsy mpMRI were included. Clinical feature analysis included 1572 systematic biopsy cores (1149 C0, 272 C1, 151 C2) and 736 MRI-targeted biopsy cores (253 C0, 272 C1, 211 C2). Of the 131 patients with confirmed CBFM pathology, targeted biopsy (TBx) alone identified CBFM in 76.3% (100/131) of patients and detected PCa in 97.7% (128/131) patients. SBx biopsy alone detected CBFM in 61.1% (80/131) of patients and PCa in 90.8% (119/131) patients. TBx and SBx had equivalent detection in patients with smaller prostates (p = 0.045). For both PCa lesion groups there was a positive and significant correlation between maximum MRI lesion dimension and CCL (C1 lesions: p < 0.01, C2 lesions: p < 0.001). There was a significant difference in CCL between C1 and C2 lesions for T2 scores of 3 and 5 (p ≤ 0.01, p ≤ 0.01, respectively) and PI-RADS 5 lesions (p ≤ 0.01), with C2 lesions having larger CCL, despite no significant difference in MRI lesion dimension. CONCLUSIONS: The extent of disease for CBFM-containing tumors is difficult to capture on mpMRI. When comparing MRI lesions of similar dimensions and PIRADS scores, CBFM-containing tumors appear to have larger cancer yield on biopsy. Proper staging and planning of therapeutic interventions is reliant on accurate mpMRI estimation. Special considerations should be taken for patients with CBFM pattern on prostate biopsy.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Biopsia Guiada por Imagen/métodos , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología
20.
Urology ; 181: 76-83, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37572884

RESUMEN

OBJECTIVE: To report an initial experience with a novel, "fully" transperineal (TP) prostate fusion biopsy using an unconstrained ultrasound transducer placed on the perineal skin to guide biopsy needles inserted via a TP approach. METHODS: Conventional TP prostate biopsies for detection of prostate cancer have been performed with transrectal ultrasound, requiring specialized hardware, imposing limitations on needle trajectory, and contributing to patient discomfort. Seventy-six patients with known or suspected prostate cancer underwent 78 TP biopsy sessions in an academic center between June 2018 and April 2022 and were included in this study. These patients underwent TP prostate fusion biopsy using a grid or freehand device with transrectal ultrasound as well as TP prostate fusion biopsy using TP ultrasound in the same session. Per-session and per-lesion cancer detection rates were compared for conventional and fully TP biopsies using Fisher exact and McNemar's tests. RESULTS: After a refinement period in 30 patients, 92 MRI-visible prostate lesions were sampled in 46 subsequent patients, along with repeat biopsies in 2 of the 30 patients from the refinement period. Grade group ≥2 cancer was diagnosed in 24/92 lesions (26%) on conventional TP biopsy (17 lesions with grid, 7 with freehand device), and in 25/92 lesions (27%) on fully TP biopsy (P = 1.00), with a 73/92 (79%) rate of agreement for grade group ≥2 cancer between the two methods. CONCLUSION: Fully TP biopsy is feasible and may detect prostate cancer with detection rates comparable to conventional TP biopsy.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/diagnóstico por imagen , Próstata/patología , Ultrasonografía Intervencional/métodos , Biopsia , Biopsia Guiada por Imagen/métodos , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA