Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Plants ; 10(8): 1172-1183, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39134664

RESUMEN

Biological membranes play a crucial role in actively hosting, modulating and coordinating a wide range of molecular events essential for cellular function. Membranes are organized into diverse domains giving rise to dynamic molecular patchworks. However, the very definition of membrane domains has been the subject of continuous debate. For example, in the plant field, membrane domains are often referred to as nanodomains, nanoclusters, microdomains, lipid rafts, membrane rafts, signalling platforms, foci or liquid-ordered membranes without any clear rationale. In the context of plant-microbe interactions, microdomains have sometimes been used to refer to the large area at the plant-microbe interface. Some of these terms have partially overlapping meanings at best, but they are often used interchangeably in the literature. This situation generates much confusion and limits conceptual progress. There is thus an urgent need for us as a scientific community to resolve these semantic and conceptual controversies by defining an unambiguous nomenclature of membrane domains. In this Review, experts in the field get together to provide explicit definitions of plasma membrane domains in plant systems and experimental guidelines for their study. We propose that plasma membrane domains should not be considered on the basis of their size alone but rather according to the biological system being considered, such as the local membrane environment or the entire cell.


Asunto(s)
Membrana Celular , Microdominios de Membrana , Plantas , Terminología como Asunto , Microdominios de Membrana/metabolismo , Membrana Celular/metabolismo
2.
J Exp Bot ; 75(17): 5237-5250, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38761107

RESUMEN

The delineation of protein-lipid interfaces is essential for understanding the mechanisms of various membrane-associated processes crucial to plant development and growth, including signalling, trafficking, and membrane transport. Due to their highly dynamic nature, the precise characterization of lipid-protein interactions by experimental techniques is challenging. Molecular dynamics simulations provide a powerful computational alternative with a spatial-temporal resolution allowing the atomistic-level description. In this review, we aim to introduce plant scientists to molecular dynamics simulations. We describe different steps of performing molecular dynamics simulations and provide a broad survey of molecular dynamics studies investigating plant protein-lipid interfaces. Our aim is also to illustrate that combining molecular dynamics simulations with artificial intelligence-based protein structure determination opens up unprecedented possibilities for future investigations of dynamic plant protein-lipid interfaces.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Plantas/metabolismo
3.
Nat Cell Biol ; 26(3): 438-449, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38347182

RESUMEN

Clathrin-mediated endocytosis is an essential cellular internalization pathway involving the dynamic assembly of clathrin and accessory proteins to form membrane-bound vesicles. The evolutionarily ancient TSET-TPLATE complex (TPC) plays an essential, but ill-defined role in endocytosis in plants. Here we show that two highly disordered TPC subunits, AtEH1 and AtEH2, function as scaffolds to drive biomolecular condensation of the complex. These condensates specifically nucleate on the plasma membrane through interactions with anionic phospholipids, and facilitate the dynamic recruitment and assembly of clathrin, as well as early- and late-stage endocytic accessory proteins. Importantly, condensation promotes ordered clathrin assemblies. TPC-driven biomolecular condensation thereby facilitates dynamic protein assemblies throughout clathrin-mediated endocytosis. Furthermore, we show that a disordered region of AtEH1 controls the material properties of endocytic condensates in vivo. Alteration of these material properties disturbs the recruitment of accessory proteins, influences endocytosis dynamics and impairs plant responsiveness. Our findings reveal how collective interactions shape endocytosis.


Asunto(s)
Clatrina , Endocitosis , Membrana Celular/metabolismo , Clatrina/metabolismo
4.
Annu Rev Plant Biol ; 75(1): 521-550, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38237062

RESUMEN

Endocytosis is an essential eukaryotic process that maintains the homeostasis of the plasma membrane proteome by vesicle-mediated internalization. Its predominant mode of operation utilizes the polymerization of the scaffold protein clathrin forming a coat around the vesicle; therefore, it is termed clathrin-mediated endocytosis (CME). Throughout evolution, the machinery that mediates CME is marked by losses, multiplications, and innovations. CME employs a limited number of conserved structural domains and folds, whose assembly and connections are species dependent. In plants, many of the domains are grouped into an ancient multimeric complex, the TPLATE complex, which occupies a central position as an interaction hub for the endocytic machinery. In this review, we provide an overview of the current knowledge regarding the structural aspects of plant CME, and we draw comparisons to other model systems. To do so, we have taken advantage of recent developments with respect to artificial intelligence-based protein structure prediction.


Asunto(s)
Clatrina , Endocitosis , Plantas , Endocitosis/fisiología , Clatrina/metabolismo , Clatrina/química , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Evolución Biológica , Membrana Celular/metabolismo , Evolución Molecular
5.
EMBO Rep ; 24(9): e54709, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37458257

RESUMEN

Endocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to rapidly respond to stimuli. The evolutionary ancient TPLATE complex (TPC) plays an essential role in endocytosis in Arabidopsis plants. Knockout or knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause mild developmental deviations. Here, we took advantage of the partially functional TPLATE allele, WDXM2, to investigate a role for TPC-dependent endocytosis in receptor-mediated signaling. We discovered that reduced TPC-dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 peptide signaling. This hypersensitivity correlated with the abundance of the CLAVATA3 receptor protein kinase CLAVATA1 at the plasma membrane. Genetic and biochemical analysis as well as live-cell imaging revealed that TPC-dependent regulation of CLAVATA3-dependent internalization of CLAVATA1 from the plasma membrane is required for shoot stem cell homeostasis. Our findings provide evidence that TPC-mediated endocytosis and degradation of CLAVATA1 is a mechanism to dampen CLAVATA3-mediated signaling during plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endocitosis , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal
6.
Plant Physiol ; 193(1): 54-69, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37165709

RESUMEN

Polar callose deposition into the extracellular matrix is tightly controlled in time and space. Its presence in the cell wall modifies the properties of the surrounding area, which is fundamental for the correct execution of numerous processes such as cell division, male gametophyte development, intercellular transport, or responses to biotic and abiotic stresses. Previous studies have been invaluable in characterizing specific callose synthases (CalSs) during individual cellular processes. However, the complex view of the relationships between a particular CalS and a specific process is still lacking. Here we review the recent proceedings on the role of callose and individual CalSs in cell wall remodelling from an evolutionary perspective and with a particular focus on cytokinesis. We provide a robust phylogenetic analysis of CalS across the plant kingdom, which implies a 3-subfamily distribution of CalS. We also discuss the possible linkage between the evolution of CalSs and their function in specific cell types and processes.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Filogenia , Glucanos/metabolismo , Desarrollo de la Planta , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo
8.
Plant Physiol ; 192(1): 65-76, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36617237

RESUMEN

The brassinosteroid (BR) hormone and its plasma membrane (PM) receptor BR INSENSITIVE1 (BRI1) are one of the best-studied receptor-ligand pairs for understanding the interplay between receptor endocytosis and signaling in plants. BR signaling is mainly determined by the PM pool of BRI1, whereas BRI1 endocytosis ensures signal attenuation. As BRs are ubiquitously distributed in the plant, the tools available to study the BRI1 function without interference from endogenous BRs are limited. Here, we designed a BR binding-deficient Arabidopsis (Arabidopsis thaliana) mutant based on protein sequence-structure analysis and homology modeling of members of the BRI1 family. This tool allowed us to re-examine the BRI1 endocytosis and signal attenuation model. We showed that despite impaired phosphorylation and ubiquitination, BR binding-deficient BRI1 internalizes similarly to the wild type form. Our data indicate that BRI1 internalization relies on different endocytic machineries. In addition, the BR binding-deficient mutant provides opportunities to study non-canonical ligand-independent BRI1 functions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Ligandos , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
9.
Nat Plants ; 8(12): 1467-1483, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456802

RESUMEN

Endocytosis controls the perception of stimuli by modulating protein abundance at the plasma membrane. In plants, clathrin-mediated endocytosis is the most prominent internalization pathway and relies on two multimeric adaptor complexes, the AP-2 and the TPLATE complex (TPC). Ubiquitination is a well-established modification triggering endocytosis of cargo proteins, but how this modification is recognized to initiate the endocytic event remains elusive. Here we show that TASH3, one of the large subunits of TPC, recognizes ubiquitinated cargo at the plasma membrane via its SH3 domain-containing appendage. TASH3 lacking this evolutionary specific appendage modification allows TPC formation but the plants show severely reduced endocytic densities, which correlates with reduced endocytic flux. Moreover, comparative plasma membrane proteomics identified differential accumulation of multiple ubiquitinated cargo proteins for which we confirm altered trafficking. Our findings position TPC as a key player for ubiquitinated cargo internalization, allowing future identification of target proteins under specific stress conditions.


Asunto(s)
Clatrina , Endocitosis , Clatrina/genética , Clatrina/metabolismo , Membrana Celular/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
10.
Nat Plants ; 8(11): 1245-1261, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36376753

RESUMEN

The central metabolic regulator SnRK1 controls plant growth and survival upon activation by energy depletion, but detailed molecular insight into its regulation and downstream targets is limited. Here we used phosphoproteomics to infer the sucrose-dependent processes targeted upon starvation by kinases as SnRK1, corroborating the relation of SnRK1 with metabolic enzymes and transcriptional regulators, while also pointing to SnRK1 control of intracellular trafficking. Next, we integrated affinity purification, proximity labelling and crosslinking mass spectrometry to map the protein interaction landscape, composition and structure of the SnRK1 heterotrimer, providing insight in its plant-specific regulation. At the intersection of this multi-dimensional interactome, we discovered a strong association of SnRK1 with class II T6P synthase (TPS)-like proteins. Biochemical and cellular assays show that TPS-like proteins function as negative regulators of SnRK1. Next to stable interactions with the TPS-like proteins, similar intricate connections were found with known regulators, suggesting that plants utilize an extended kinase complex to fine-tune SnRK1 activity for optimal responses to metabolic stress.


Asunto(s)
Proteínas de Arabidopsis , Fosfatos de Azúcar , Fosfatos de Azúcar/metabolismo , Trehalosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Plantas/metabolismo , Transducción de Señal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
Plant Cell ; 34(6): 2424-2448, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35348751

RESUMEN

Membrane contact sites (MCSs) are interorganellar connections that allow for the direct exchange of molecules, such as lipids or Ca2+ between organelles, but can also serve to tether organelles at specific locations within cells. Here, we identified and characterized three proteins of Arabidopsis thaliana that form a lipid droplet (LD)-plasma membrane (PM) tethering complex in plant cells, namely LD-localized SEED LD PROTEIN (SLDP) 1 and SLDP2 and PM-localized LD-PLASMA MEMBRANE ADAPTOR (LIPA). Using proteomics and different protein-protein interaction assays, we show that both SLDPs associate with LIPA. Disruption of either SLDP1 and SLDP2 expression, or that of LIPA, leads to an aberrant clustering of LDs in Arabidopsis seedlings. Ectopic co-expression of one of the SLDPs with LIPA is sufficient to reconstitute LD-PM tethering in Nicotiana tabacum pollen tubes, a cell type characterized by dynamically moving LDs in the cytosolic streaming. Furthermore, confocal laser scanning microscopy revealed both SLDP2.1 and LIPA to be enriched at LD-PM contact sites in seedlings. These and other results suggest that SLDP and LIPA interact to form a tethering complex that anchors a subset of LDs to the PM during post-germinative seedling growth in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Gotas Lipídicas/metabolismo , Plantones/genética , Plantones/metabolismo , Semillas/genética , Semillas/metabolismo
12.
New Phytol ; 233(5): 2185-2202, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34931304

RESUMEN

Pollen tubes require a tightly regulated pectin secretion machinery to sustain the cell wall plasticity required for polar tip growth. Involved in this regulation at the apical plasma membrane are proteins and signaling molecules, including phosphoinositides and phosphatidic acid (PA). However, the contribution of diacylglycerol kinases (DGKs) is not clear. We transiently expressed tobacco DGKs in pollen tubes to identify a plasma membrane (PM)-localized isoform, and then to study its effect on pollen tube growth, pectin secretion and lipid signaling. In order to potentially downregulate DGK5 function, we overexpressed an inactive variant. Only one of eight DGKs displayed a confined localization at the apical PM. We could demonstrate its enzymatic activity and that a kinase-dead variant was inactive. Overexpression of either variant led to differential perturbations including misregulation of pectin secretion. One mode of regulation could be that DGK5-formed PA regulates phosphatidylinositol 4-phosphate 5-kinases, as overexpression of the inactive DGK5 variant not only led to a reduction of PA but also of phosphatidylinositol 4,5-bisphosphate levels and suppressed related growth phenotypes. We conclude that DGK5 is an additional player of polar tip growth that regulates pectin secretion probably in a common pathway with PI4P 5-kinases.


Asunto(s)
Nicotiana , Tubo Polínico , Membrana Celular/metabolismo , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Fosfatidilinositoles/metabolismo , Nicotiana/metabolismo
13.
Plant Cell ; 34(1): 302-332, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34010411

RESUMEN

Phosphoinositides are low-abundant lipids that participate in the acquisition of membrane identity through their spatiotemporal enrichment in specific compartments. Phosphatidylinositol 4-phosphate (PI4P) accumulates at the plant plasma membrane driving its high electrostatic potential, and thereby facilitating interactions with polybasic regions of proteins. PI4Kα1 has been suggested to produce PI4P at the plasma membrane, but how it is recruited to this compartment is unknown. Here, we pin-point the mechanism that tethers Arabidopsis thaliana phosphatidylinositol 4-kinase alpha1 (PI4Kα1) to the plasma membrane via a nanodomain-anchored scaffolding complex. We established that PI4Kα1 is part of a complex composed of proteins from the NO-POLLEN-GERMINATION, EFR3-OF-PLANTS, and HYCCIN-CONTAINING families. Comprehensive knockout and knockdown strategies revealed that subunits of the PI4Kα1 complex are essential for pollen, embryonic, and post-embryonic development. We further found that the PI4Kα1 complex is immobilized in plasma membrane nanodomains. Using synthetic mis-targeting strategies, we demonstrate that a combination of lipid anchoring and scaffolding localizes PI4Kα1 to the plasma membrane, which is essential for its function. Together, this work opens perspectives on the mechanisms and function of plasma membrane nanopatterning by lipid kinases.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regiones de Fijación a la Matriz , Antígenos de Histocompatibilidad Menor/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34470819

RESUMEN

Polarized exocytosis is essential for many vital processes in eukaryotic cells, where secretory vesicles are targeted to distinct plasma membrane domains characterized by their specific lipid-protein composition. Heterooctameric protein complex exocyst facilitates the vesicle tethering to a target membrane and is a principal cell polarity regulator in eukaryotes. The architecture and molecular details of plant exocyst and its membrane recruitment have remained elusive. Here, we show that the plant exocyst consists of two modules formed by SEC3-SEC5-SEC6-SEC8 and SEC10-SEC15-EXO70-EXO84 subunits, respectively, documenting the evolutionarily conserved architecture within eukaryotes. In contrast to yeast and mammals, the two modules are linked by a plant-specific SEC3-EXO70 interaction, and plant EXO70 functionally dominates over SEC3 in the exocyst recruitment to the plasma membrane. Using an interdisciplinary approach, we found that the C-terminal part of EXO70A1, the canonical EXO70 isoform in Arabidopsis, is critical for this process. In contrast to yeast and animal cells, the EXO70A1 interaction with the plasma membrane is mediated by multiple anionic phospholipids uniquely contributing to the plant plasma membrane identity. We identified several evolutionary conserved EXO70 lysine residues and experimentally proved their importance for the EXO70A1-phospholipid interactions. Collectively, our work has uncovered plant-specific features of the exocyst complex and emphasized the importance of the specific protein-lipid code for the recruitment of peripheral membrane proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfolípidos/metabolismo , Membrana Celular/metabolismo , Polaridad Celular , Citoplasma/metabolismo , Exocitosis , Proteómica/métodos
15.
Nat Commun ; 12(1): 3050, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031427

RESUMEN

Clathrin-mediated endocytosis (CME) is the gatekeeper of the plasma membrane. In contrast to animals and yeasts, CME in plants depends on the TPLATE complex (TPC), an evolutionary ancient adaptor complex. However, the mechanistic contribution of the individual TPC subunits to plant CME remains elusive. In this study, we used a multidisciplinary approach to elucidate the structural and functional roles of the evolutionary conserved N-terminal Eps15 homology (EH) domains of the TPC subunit AtEH1/Pan1. By integrating high-resolution structural information obtained by X-ray crystallography and NMR spectroscopy with all-atom molecular dynamics simulations, we provide structural insight into the function of both EH domains. Both domains bind phosphatidic acid with a different strength, and only the second domain binds phosphatidylinositol 4,5-bisphosphate. Unbiased peptidome profiling by mass-spectrometry revealed that the first EH domain preferentially interacts with the double N-terminal NPF motif of a previously unidentified TPC interactor, the integral membrane protein Secretory Carrier Membrane Protein 5 (SCAMP5). Furthermore, we show that AtEH/Pan1 proteins control the internalization of SCAMP5 via this double NPF peptide interaction motif. Collectively, our structural and functional studies reveal distinct but complementary roles of the EH domains of AtEH/Pan1 in plant CME and connect the internalization of SCAMP5 to the TPLATE complex.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Unión al Calcio/química , Endocitosis , Proteínas de Plantas/química , Unión Proteica , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Arabidopsis , Proteínas de Unión al Calcio/genética , Membrana Celular/metabolismo , Cristalografía por Rayos X , Proteínas de la Membrana/química , Simulación de Dinámica Molecular , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Dominios Proteicos , Transporte de Proteínas , Alineación de Secuencia , Nicotiana/genética
16.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876766

RESUMEN

In plants, endocytosis is essential for many developmental and physiological processes, including regulation of growth and development, hormone perception, nutrient uptake, and defense against pathogens. Our toolbox to modulate this process is, however, rather limited. Here, we report a conditional tool to impair endocytosis. We generated a partially functional TPLATE allele by substituting the most conserved domain of the TPLATE subunit of the endocytic TPLATE complex (TPC). This substitution destabilizes TPC and dampens the efficiency of endocytosis. Short-term heat treatment increases TPC destabilization and reversibly delocalizes TPLATE from the plasma membrane to aggregates in the cytoplasm. This blocks FM uptake and causes accumulation of various known endocytic cargoes at the plasma membrane. Short-term heat treatment therefore transforms the partially functional TPLATE allele into an effective conditional tool to impair endocytosis. Next to their role in endocytosis, several TPC subunits are also implicated in actin-regulated autophagosomal degradation. Inactivating TPC via the WDX mutation, however, does not impair autophagy, thus enabling specific and reversible modulation of endocytosis in planta.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Endocitosis , Arabidopsis , Proteínas de Arabidopsis/genética , Respuesta al Choque Térmico , Mutación
17.
Sci Adv ; 7(9)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33637534

RESUMEN

Eukaryotic cells rely on endocytosis to regulate their plasma membrane proteome and lipidome. Most eukaryotic groups, except fungi and animals, have retained the evolutionary ancient TSET complex as an endocytic regulator. Unlike other coatomer complexes, structural insight into TSET is lacking. Here, we reveal the molecular architecture of plant TSET [TPLATE complex (TPC)] using an integrative structural approach. We identify crucial roles for specific TSET subunits in complex assembly and membrane interaction. Our data therefore generate fresh insight into the differences between the hexameric TSET in Dictyostelium and the octameric TPC in plants. Structural elucidation of this ancient adaptor complex represents the missing piece in the coatomer puzzle and vastly advances our functional as well as evolutionary insight into the process of endocytosis.

19.
J Biol Chem ; 295(26): 8819-8833, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32385109

RESUMEN

Retroviral Gag polyproteins are targeted to the inner leaflet of the plasma membrane through their N-terminal matrix (MA) domain. Because retroviruses of different morphogenetic types assemble their immature particles in distinct regions of the host cell, the mechanism of MA-mediated plasma membrane targeting differs among distinct retroviral morphogenetic types. Here, we focused on possible mechanistic differences of the MA-mediated plasma membrane targeting of the B-type mouse mammary tumor virus (MMTV) and C-type HIV-1, which assemble in the cytoplasm and at the plasma membrane, respectively. Molecular dynamics simulations, together with surface mapping, indicated that, similarly to HIV-1, MMTV uses a myristic switch to anchor the MA to the membrane and electrostatically interacts with phosphatidylinositol 4,5-bisphosphate to stabilize MA orientation. We observed that the affinity of MMTV MA to the membrane is lower than that of HIV-1 MA, possibly related to their different topologies and the number of basic residues in the highly basic MA region. The latter probably reflects the requirement of C-type retroviruses for tighter membrane binding, essential for assembly, unlike for D/B-type retroviruses, which assemble in the cytoplasm. A comparison of the membrane topology of the HIV-1 MA, using the surface-mapping method and molecular dynamics simulations, revealed that the residues at the HIV-1 MA C terminus help stabilize protein-protein interactions within the HIV-1 MA lattice at the plasma membrane. In summary, HIV-1 and MMTV share common features such as membrane binding of the MA via hydrophobic interactions and exhibit several differences, including lower membrane affinity of MMTV MA.


Asunto(s)
Membrana Celular/metabolismo , Infecciones por VIH/metabolismo , VIH-1/fisiología , Virus del Tumor Mamario del Ratón/fisiología , Infecciones por Retroviridae/metabolismo , Infecciones Tumorales por Virus/metabolismo , Animales , Membrana Celular/patología , Infecciones por VIH/patología , Interacciones Huésped-Patógeno , Humanos , Ratones , Modelos Moleculares , Infecciones por Retroviridae/patología , Infecciones Tumorales por Virus/patología , Ensamble de Virus
20.
Plant Physiol ; 183(3): 986-997, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32321842

RESUMEN

The TPLATE complex (TPC) is a key endocytic adaptor protein complex in plants. TPC in Arabidopsis (Arabidopsis thaliana) contains six evolutionarily conserved subunits and two plant-specific subunits (AtEH1/Pan1 and AtEH2/Pan1) which, although cytoplasmic proteins, are not associated with the hexameric subcomplex in the cytoplasm. To investigate the dynamic assembly of the octameric TPC at the plasma membrane (PM), we performed state-of-the-art dual-color live-cell imaging at physiological and lowered temperatures. Lowering the temperature slowed down endocytosis, thereby enhancing the temporal resolution of the differential recruitment of endocytic components. Under both normal and lowered temperature conditions, the core TPC subunit TPLATE and the AtEH/Pan1 proteins exhibited simultaneous recruitment at the PM. These results, together with colocalization analysis of different TPC subunits, allow us to conclude that the TPC in plant cells is not recruited to the PM sequentially but as an octameric complex.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Clatrina/genética , Clatrina/metabolismo , Temperatura , Regulación de la Expresión Génica de las Plantas , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA