Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19809, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191802

RESUMEN

Kindlin-2 is a cytoskeletal adapter protein that is present in many different cell types. By virtue of its interaction with multiple binding partners, Kindlin-2 intercalates into numerous signaling pathways and cytoskeletal nodes. A specific interaction of Kindlin-2 that is of paramount importance in many cellular responses is its direct binding to the cytoplasmic tails of integrins, an interaction that controls many of the adhesive, migratory and signaling responses mediated by members of the integrin family of cell-surface heterodimers. Kindlin-2 is highly expressed in many cancers and is particularly prominent in prostate cancer cells. CRISPR/cas9 was used as a primary approach to knockout expression of Kindlin-2 in both androgen-independent and dependent prostate cancer cell lines, and the effects of Kindlin-2 suppression on oncogenic properties of these prostate cancer cell lines was examined. Adhesion to extracellular matrix proteins was markedly blunted, consistent with the control of integrin function by Kindlin-2. Migration across matrices was also affected. Anchorage independent growth was markedly suppressed. These observations indicate that Kindlin-2 regulates hallmark features of prostate cancer cells. In androgen expressing cells, testosterone-stimulated adhesion was Kindlin-2-dependent. Furthermore, tumor growth of a prostate cancer cell line lacking Kindlin-2 and implanted into the prostate gland of immunocompromised mice was markedly blunted and was associated with suppression of angiogenesis in the developing tumor. These results establish a key role of Kindlin-2 in prostate cancer progression and suggest that Kindlin-2 represents an interesting therapeutic target for treatment of prostate cancer.


Asunto(s)
Adhesión Celular , Proteínas de la Membrana , Proteínas de Neoplasias , Neoplasias de la Próstata , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Humanos , Animales , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Línea Celular Tumoral , Ratones , Movimiento Celular , Proliferación Celular , Integrinas/metabolismo
2.
Matrix Biol ; 124: 49-62, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956856

RESUMEN

Highly aggressive, metastatic, neuroendocrine prostate cancer, which typically develops from prostate cancer cells acquiring resistance to androgen deprivation therapy, is associated with limited treatment options and hence poor prognosis. We have previously demonstrated that the αVß3 integrin is over-expressed in neuroendocrine prostate cancer. We now show that LM609, a monoclonal antibody that specifically targets the human αVß3 integrin, hinders the growth of neuroendocrine prostate cancer patient-derived xenografts in vivo. Our group has recently identified a novel αVß3 integrin binding partner, NgR2, responsible for regulating the expression of neuroendocrine markers and for inducing neuroendocrine differentiation in prostate cancer cells. Through in vitro functional assays, we here demonstrate that NgR2 is crucial in promoting cell adhesion to αVß3 ligands. Moreover, we describe for the first time co-fractionation of αVß3 integrin and NgR2 in small extracellular vesicles derived from metastatic prostate cancer patients' plasma. These prostate cancer patient-derived small extracellular vesicles have a functional impact on human monocytes, increasing their adhesion to fibronectin. The monocytes incubated with small extracellular vesicles do not show an associated change in conventional polarization marker expression and appear to be in an early stage that may be defined as "adhesion competent". Overall, these findings allow us to better understand integrin-directed signaling and cell-cell communication during cancer progression. Furthermore, our results pave the way for new diagnostic and therapeutic perspectives for patients affected by neuroendocrine prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Antagonistas de Andrógenos , Transducción de Señal , Anticuerpos Monoclonales , Integrinas , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Línea Celular Tumoral
3.
J Biol Chem ; 299(6): 104774, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142218

RESUMEN

Mitochondria are signaling organelles implicated in cancer, but the mechanisms are elusive. Here, we show that Parkin, an E3 ubiquitination (Ub) ligase altered in Parkinson's disease, forms a complex with the regulator of cell motility, Kindlin-2 (K2), at mitochondria of tumor cells. In turn, Parkin ubiquitinates Lys581 and Lys582 using Lys48 linkages, resulting in proteasomal degradation of K2 and shortened half-life from ∼5 h to ∼1.5 h. Loss of K2 inhibits focal adhesion turnover and ß1 integrin activation, impairs membrane lamellipodia size and frequency, and inhibits mitochondrial dynamics, altogether suppressing tumor cell-extracellular matrix interactions, migration, and invasion. Conversely, Parkin does not affect tumor cell proliferation, cell cycle transitions, or apoptosis. Expression of a Parkin Ub-resistant K2 Lys581Ala/Lys582Ala double mutant is sufficient to restore membrane lamellipodia dynamics, correct mitochondrial fusion/fission, and preserve single-cell migration and invasion. In a 3D model of mammary gland developmental morphogenesis, impaired K2 Ub drives multiple oncogenic traits of EMT, increased cell proliferation, reduced apoptosis, and disrupted basal-apical polarity. Therefore, deregulated K2 is a potent oncogene, and its Ub by Parkin enables mitochondria-associated metastasis suppression.


Asunto(s)
Proteínas de la Membrana , Ubiquitina-Proteína Ligasas , Movimiento Celular , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Humanos
4.
Blood ; 141(21): 2629-2641, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36867840

RESUMEN

The communication of talin-activated integrin αIIbß3 with the cytoskeleton (integrin outside-in signaling) is essential for platelet aggregation, wound healing, and hemostasis. Filamin, a large actin crosslinker and integrin binding partner critical for cell spreading and migration, is implicated as a key regulator of integrin outside-in signaling. However, the current dogma is that filamin, which stabilizes inactive αIIbß3, is displaced from αIIbß3 by talin to promote the integrin activation (inside-out signaling), and how filamin further functions remains unresolved. Here, we show that while associating with the inactive αIIbß3, filamin also associates with the talin-bound active αIIbß3 to mediate platelet spreading. Fluorescence resonance energy transfer-based analysis reveals that while associating with both αIIb and ß3 cytoplasmic tails (CTs) to maintain the inactive αIIbß3, filamin is spatiotemporally rearranged to associate with αIIb CT alone on activated αIIbß3. Consistently, confocal cell imaging indicates that integrin α CT-linked filamin gradually delocalizes from the ß CT-linked focal adhesion marker-vinculin likely because of the separation of integrin α/ß CTs occurring during integrin activation. High-resolution crystal and nuclear magnetic resonance structure determinations unravel that the activated integrin αIIb CT binds to filamin via a striking α-helix→ß-strand transition with a strengthened affinity that is dependent on the integrin-activating membrane environment containing enriched phosphatidylinositol 4,5-bisphosphate. These data suggest a novel integrin αIIb CT-filamin-actin linkage that promotes integrin outside-in signaling. Consistently, disruption of such linkage impairs the activation state of αIIbß3, phosphorylation of focal adhesion kinase/proto-oncogene tyrosine kinase Src, and cell migration. Together, our findings advance the fundamental understanding of integrin outside-in signaling with broad implications in blood physiology and pathology.


Asunto(s)
Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Glicoproteína IIb de Membrana Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Actinas/metabolismo , Filaminas/metabolismo , Talina/metabolismo , Plaquetas/metabolismo
5.
Blood Adv ; 7(9): 1739-1753, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36649586

RESUMEN

Kindlin-3 (K3) is critical for the activation of integrin adhesion receptors in hematopoietic cells. In humans and mice, K3 deficiency is associated with impaired immunity and bone development, bleeding, and aberrant erythrocyte shape. To delineate how K3 deficiency (K3KO) contributes to anemia and misshaped erythrocytes, mice deficient in erythroid (K3KO∖EpoR-cre) or myeloid cell K3 (K3KO∖Lyz2cre), knockin mice expressing mutant K3 (Q597W598 to AA) with reduced integrin-activation function (K3KI), and control wild-type (WT) K3 mice were studied. Both K3-deficient strains and K3KI mice showed anemia at baseline, reduced response to erythropoietin stimulation, and compromised recovery after phenylhydrazine (PHZ)-induced hemolytic anemia as compared with K3WT. Erythroid K3KO and K3 (Q597W598 to AA) showed arrested erythroid differentiation at proerythroblast stage, whereas macrophage K3KO showed decreased erythroblast numbers at all developmental stages of terminal erythroid differentiation because of reduced erythroblastic island (EBI) formation attributable to decreased expression and activation of erythroblast integrin α4ß1 and macrophage αVß3. Peripheral blood smears of K3KO∖EpoR-cre mice, but not of the other mouse strains, showed numerous aberrant tear drop-shaped erythrocytes. K3 deficiency in these erythrocytes led to disorganized actin cytoskeleton, reduced deformability, and increased osmotic fragility. Mechanistically, K3 directly interacted with F-actin through an actin-binding site K3-LK48. Taken together, these findings document that erythroid and macrophage K3 are critical contributors to erythropoiesis in an integrin-dependent manner, whereas F-actin binding to K3 maintains the membrane cytoskeletal integrity and erythrocyte biconcave shape. The dual function of K3 in erythrocytes and in EBIs establish an important functional role for K3 in normal erythroid function.


Asunto(s)
Proteínas del Citoesqueleto , Eritropoyesis , Animales , Humanos , Ratones , Actinas/metabolismo , Anemia Hemolítica , Proteínas del Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Integrinas/metabolismo
6.
Sci Rep ; 12(1): 18879, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344556

RESUMEN

Androgen deprivation therapies aimed to target prostate cancer (PrCa) are only partially successful given the occurrence of neuroendocrine PrCa (NEPrCa), a highly aggressive and highly metastatic form of PrCa, for which there is no effective therapeutic approach. Our group has demonstrated that while absent in prostate adenocarcinoma, the αVß3 integrin expression is increased during PrCa progression toward NEPrCa. Here, we show a novel pathway activated by αVß3 that promotes NE differentiation (NED). This novel pathway requires the expression of a GPI-linked surface molecule, NgR2, also known as Nogo-66 receptor homolog 1. We show here that NgR2 is upregulated by αVß3, to which it associates; we also show that it promotes NED and anchorage-independent growth, as well as a motile phenotype of PrCa cells. Given our observations that high levels of αVß3 and, as shown here, of NgR2 are detected in human and mouse NEPrCa, our findings appear to be highly relevant to this aggressive and metastatic subtype of PrCa. This study is novel because NgR2 role has only minimally been investigated in cancer and has instead predominantly been analyzed in neurons. These data thus pave new avenues toward a comprehensive mechanistic understanding of integrin-directed signaling during PrCa progression toward a NE phenotype.


Asunto(s)
Carcinoma Neuroendocrino , Proteína NgR2 , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Antagonistas de Andrógenos , Carcinoma Neuroendocrino/patología , Línea Celular Tumoral , Integrinas , Neoplasias de la Próstata/patología , Proteína NgR2/metabolismo
7.
Nat Commun ; 13(1): 2362, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35488005

RESUMEN

Talin-induced integrin binding to extracellular matrix ligands (integrin activation) is the key step to trigger many fundamental cellular processes including cell adhesion, cell migration, and spreading. Talin is widely known to use its N-terminal head domain (talin-H) to bind and activate integrin, but how talin-H operates in the context of full-length talin and its surrounding remains unknown. Here we show that while being capable of inducing integrin activation, talin-H alone exhibits unexpectedly low potency versus a constitutively activated full-length talin. We find that the large C-terminal rod domain of talin (talin-R), which otherwise masks the integrin binding site on talin-H in inactive talin, dramatically enhances the talin-H potency by dimerizing activated talin and bridging it to the integrin co-activator kindlin-2 via the adaptor protein paxillin. These data provide crucial insight into the mechanism of talin and its cooperation with kindlin to promote potent integrin activation, cell adhesion, and signaling.


Asunto(s)
Proteínas de la Membrana , Talina , Adhesión Celular , Integrinas/metabolismo , Proteínas de la Membrana/metabolismo , Unión Proteica , Talina/metabolismo
8.
Biomolecules ; 12(2)2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35204713

RESUMEN

Plasminogen and its multiple receptors have been implicated in the responses of many different cell types. Among these receptors, histone 2B (H2B) has been shown to play a prominent role in macrophage responses. The contribution of H2B to plasminogen-induced endothelial migration, an event relevant to wound healing and angiogenesis, is unknown. Plasminogen enhanced the migration of endothelial cells, which was inhibited by both Protease-Activated Receptor-1 (PAR1) and 2 (PAR2) antagonists. H2B was detected on viable endothelial cells of venous and arterial origin, and an antibody to H2B that blocks plasminogen binding also inhibited the plasminogen-dependent migration by these cells. The antibody blockade was as effective as PAR1 or PAR2 antagonists in inhibiting endothelial cell migration. In pull-down experiments, H2B formed a complex with both PAR1 and PAR2 but not ß3 integrin, another receptor implicated in endothelial migration in the presence of plasminogen. H2B was found to be associated with clathrin adapator protein, AP2µ (clathrin AP2µ) and ß-arrestin2, which are central to the internationalization/signaling machinery of the PARs. These associations with PAR1-clathrin adaptor AP2µ- and PAR2-ß-arrestin2-dependent internalization/signaling pathways provide a mechanism to link plasminogen to responses such as wound healing and angiogenesis.


Asunto(s)
Receptor PAR-1 , Receptor PAR-2 , Células Endoteliales/metabolismo , Histonas/metabolismo , Plasminógeno/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35177476

RESUMEN

Cancer metabolism, including in mitochondria, is a disease hallmark and therapeutic target, but its regulation is poorly understood. Here, we show that many human tumors have heterogeneous and often reduced levels of Mic60, or Mitofilin, an essential scaffold of mitochondrial structure. Despite a catastrophic collapse of mitochondrial integrity, loss of bioenergetics, and oxidative damage, tumors with Mic60 depletion slow down cell proliferation, evade cell death, and activate a nuclear gene expression program of innate immunity and cytokine/chemokine signaling. In turn, this induces epithelial-mesenchymal transition (EMT), activates tumor cell movements through exaggerated mitochondrial dynamics, and promotes metastatic dissemination in vivo. In a small-molecule drug screen, compensatory activation of stress response (GCN2) and survival (Akt) signaling maintains the viability of Mic60-low tumors and provides a selective therapeutic vulnerability. These data demonstrate that acutely damaged, "ghost" mitochondria drive tumor progression and expose an actionable therapeutic target in metastasis-prone cancers.


Asunto(s)
Mitocondrias/fisiología , Metástasis de la Neoplasia/fisiopatología , Neoplasias/genética , Muerte Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Invasividad Neoplásica/genética , Neoplasias/metabolismo , Neoplasias/fisiopatología , Procesos Neoplásicos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno , Transducción de Señal
10.
J Biol Chem ; 298(3): 101710, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35150743

RESUMEN

Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is broadly accepted that SARS-CoV-2 utilizes its spike protein to recognize the extracellular domain of angiotensin-converting enzyme 2 (ACE2) to enter cells for viral infection. However, other mechanisms of SARS-CoV-2 cell entry may occur. We show quantitatively that the SARS-CoV-2 spike protein also binds to the extracellular domain of broadly expressed integrin α5ß1 with an affinity comparable to that of SARS-CoV-2 binding to ACE2. More importantly, we provide direct evidence that such binding promotes the internalization of SARS-CoV-2 into non-ACE2 cells in a manner critically dependent upon the activation of the integrin. Our data demonstrate an alternative pathway for the cell entry of SARS-CoV-2, suggesting that upon initial ACE2-mediated invasion of the virus in the respiratory system, which is known to trigger an immune response and secretion of cytokines to activate integrin, the integrin-mediated cell invasion of SARS-CoV-2 into the respiratory system and other organs becomes effective, thereby promoting further infection and progression of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virología , Humanos , Integrinas/metabolismo , Unión Proteica , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo
11.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35158908

RESUMEN

Breast cancer (BC) is one of the leading causes of cancer-related deaths due in part to its invasive and metastatic properties. Kindlin-2 (FERMT2) is associated with the pathogenesis of several cancers. Although the role of Kindlin-2 in regulating the invasion-metastasis cascade in BC is widely documented, its function in BC initiation and progression remains to be fully elucidated. Accordingly, we generated a floxed mouse strain by targeting the Fermt2 (K2lox/lox) locus, followed by tissue-specific deletion of Kindlin-2 in the myoepithelial compartment of the mammary glands by crossing the K2lox/lox mice with K14-Cre mice. Loss of Kindlin-2 in mammary epithelial cells (MECs) showed no deleterious effects on mammary gland development, fertility, and lactation in mice bearing Kindlin-2-deletion. However, in a syngeneic mouse model of BC, mammary gland, specific knockout of Kindlin-2 inhibited the growth and metastasis of murine E0771 BC cells inoculated into the mammary fat pads. However, injecting the E0771 cells into the lateral tail vein of Kindlin-2-deleted mice had no effect on tumor colonization in the lungs, thereby establishing a critical role of MEC Kindlin-2 in supporting BC tumor growth and metastasis. Mechanistically, we found the MEC Kindlin-2-mediated inhibition of tumor growth and metastasis is accomplished through its regulation of the TGF-ß/ERK MAP kinase signaling axis. Thus, Kindlin-2 within the mammary gland microenvironment facilitates the progression and metastasis of BC.

12.
Dis Model Mech ; 14(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34423816

RESUMEN

Susceptibility to doxorubicin-induced nephropathy (DIN), a toxic model for the induction of proteinuria in mice, is related to the single-nucleotide polymorphism (SNP) C6418T of the Prkdc gene encoding for the DNA-repair enzyme DNA-PKcs. In addition, plasminogen (Plg) has been reported to play a role in glomerular damage. Here, we investigated the interdependence of both factors for the development of DIN. Genotyping confirmed the SNP of the Prkdc gene in C57BL/6 (PrkdcC6418/C6418) and 129S1/SvImJ (PrkdcT6418/T6418) mice. Intercross of heterozygous 129SB6F1 mice led to 129SB6F2 hybrids with Mendelian inheritance of the SNP. After doxorubicin injection, only homozygous F2 mice with PrkdcT6418/T6418 developed proteinuria. Genetic deficiency of Plg (Plg-/-) in otherwise susceptible 129S1/SvImJ mice led to resistance to DIN. Immunohistochemistry revealed glomerular binding of Plg in Plg+/+ mice after doxorubicin injection involving histone H2B as Plg receptor. In doxorubicin-resistant C57BL/6 mice, Plg binding was absent. In conclusion, susceptibility to DIN in 129S1/SvImJ mice is determined by a hierarchical two-hit process requiring the C6418T SNP in the Prkdc gene and subsequent glomerular binding of Plg. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Histonas , Plasminógeno , Animales , ADN , Doxorrubicina/farmacología , Histonas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Plasminógeno/genética , Plasminógeno/metabolismo
13.
Cells ; 10(4)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916922

RESUMEN

Integrins serve as conduits for the transmission of information between cells and their extracellular environment. Signaling across integrins is bidirectional, transducing both inside-out and outside-signaling. Integrin activation, a transition from a low affinity/avidity state to a high affinity/avidity state for cognate ligands, is an outcome of inside-signaling. Such activation is particularly important for the recognition of soluble ligands by blood cells but also influences cell-cell and cell-matrix interactions. Integrin activation depends on a complex series of interactions, which both accelerate and inhibit their interconversion from the low to the high affinity/avidity state. There are three components regarded as being most proximately involved in integrin activation: the integrin cytoplasmic tails, talins and kindlins. The participation of each of these molecules in integrin activation is highly regulated by post-translation modifications. The importance of targeted phosphorylation of integrin cytoplasmic tails and talins in integrin activation is well-established, but much less is known about the role of post-translational modification of kindlins. The kindlins, a three-member family of 4.1-ezrin-radixin-moesin (FERM)-domain proteins in mammals, bind directly to the cytoplasmic tails of integrin beta subunits. This commentary provides a synopsis of the emerging evidence for the role of kindlin phosphorylation in integrin regulation.


Asunto(s)
Integrinas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Humanos , Proteínas de la Membrana/química , Fosforilación , Dominios Proteicos , Procesamiento Proteico-Postraduccional
14.
J Thromb Haemost ; 19(4): 941-953, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33492784

RESUMEN

OBJECTIVE: Plasminogen/plasmin is a serine protease system primarily responsible for degrading fibrin within blood clots. Plasminogen mediates its functions by interacting with plasminogen receptors on the cell surface. H2B, one such plasminogen receptor, is found on the surface of several cell types including macrophages. Both basic and clinical studies support the role of plasminogen in the process of foam cell formation (FCF), a hallmark of atherosclerosis. Growing evidence also implicates serine protease-activated receptors (PARs) in atherosclerosis. These receptors are also found on macrophages, and plasmin is capable of activating PAR1 and PAR4. The goal of this study was to determine the extent of H2B's contribution to plasminogen-mediated FCF by macrophages and if PARs are involved in this process. APPROACH AND RESULTS: Treating macrophages with plasminogen increases their oxidized low-density lipoprotein uptake and plasminogen-mediated foam cell formation (Plg-FCF) significantly. The magnitude of Plg-FCF correlates with cell-surface expression of the H2B level. H2B blockade or downregulation reduces Plg-FCF, whereas its overexpression or high endogenous levels increases Plg-FCF. Modulating PAR1 level in mouse macrophages affects Plg-FCF. Activation/overexpression of PAR1 increases and its blockade/knockdown reduces this response. Confocal imaging indicates that both H2B and PAR1 colocalize with clathrin coated pits on the surface of macrophages, and reducing expression of clathrin or interfering with the clathrin-coated pits integrity reduces Plg-FCF. CONCLUSION: Our data indicate that the magnitude of Plg-FCF by macrophages is proportional to the H2B levels and demonstrate for the first time that PAR1 is involved in this process and that the integrity of clathrin-coated pits is required for the full effect of Plg-induced FCF.


Asunto(s)
Células Espumosas , Plasminógeno , Animales , Clatrina/metabolismo , Fibrinolisina/metabolismo , Células Espumosas/metabolismo , Histonas , Macrófagos/metabolismo , Ratones , Plasminógeno/metabolismo , Receptor PAR-1
15.
J Breast Cancer Res ; 1(2): 20-29, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35936112

RESUMEN

Kindlin-1 (K1, FERMT1), Kindlin-2 (K2, FERMT2), and Kindlin-3 (K3, FERMT3) are the three members of the kindlin family of adapter proteins found in mammals. One or more kindlins are found in most cell types, K1 primarily in epithelial cells, K3 in primarily hematopoietic cells and also endothelial cells, and K2 is very broadly distributed. The kindlins consist primarily of a 4.1-erzin-radixin-moiesin (FERM) domain, which is transected by a lipid-binding plextrin-homology (PH) domain. Deficiencies of each kindlin in mice and/ or humans have profound pathogenic consequences. The most well-established function of kindlins depends on their ability to participate in the activat integrin adhesion receptors. This function depends on the binding of each kindlin to the beta subunit of integrins where it cooperates with talin to enhance avidity of interactions with cognate extracellular matrix ligands. Deficiencies of many different integrins are lethal, are critical for normal development of mammary tissue, and excessive expression and/or activation of certain integrins are associated with progression and metastasis of breast cancer. However, via its interaction with many other intracellular proteins, kindlins can influence numerous cellular responses. Changes in expression of each of the three kindlins have been reported in association with breast cancer, with several studies indicating that kindlins are among the most upregulated genes in breast cancer. The association of abnormal functions of K2 with breast cancer is particularly extensive with many reports indicating that it is a major driver of breast cancer via its promotion of cancer cell proliferation, survival, adhesion, migration, invasion, the epithelial-to-mesenchymal transition and its influence on macrophage recruitment and phenotype. These associations suggest that the kindlins and their functions represent an intriguing therapeutic target for exploration of breast cancer therapy.

16.
Acta Physiol (Oxf) ; 231(1): e13512, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32455507

RESUMEN

AIM: Sodium retention is the hallmark of nephrotic syndrome (NS) and mediated by the proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases. Plasmin is highly abundant in nephrotic urine and has been proposed to be the principal serine protease responsible for ENaC activation in NS. However, a proof of the essential role of plasmin in experimental NS is lacking. METHODS: We used a genetic mouse model of NS based on an inducible podocin knockout (Bl6-Nphs2tm3.1Antc *Tg(Nphs1-rtTA*3G)8Jhm *Tg(tetO-cre)1Jaw or nphs2Δipod ). These mice were crossed with plasminogen deficient mice (Bl6-Plgtm1Jld or plg-/- ) to generate double knockout mice (nphs2Δipod *plg-/- ). NS was induced after oral doxycycline treatment for 14 days and mice were followed for subsequent 14 days. RESULTS: Uninduced nphs2Δipod *plg-/- mice had normal kidney function and sodium handling. After induction, proteinuria increased similarly in both nphs2Δipod *plg+/+ and nphs2Δipod *plg-/- mice. Western blot revealed the urinary excretion of plasminogen and plasmin in nphs2Δipod *plg+/+ mice which were absent in nphs2Δipod *plg-/- mice. After the onset of proteinuria, amiloride-sensitive natriuresis was increased compared to the uninduced state in both genotypes. Subsequently, urinary sodium excretion dropped in both genotypes leading to an increase in body weight and development of ascites. Treatment with the serine protease inhibitor aprotinin prevented sodium retention in both genotypes. CONCLUSIONS: This study shows that mice lacking urinary plasminogen are not protected from ENaC-mediated sodium retention in experimental NS. This points to an essential role of other urinary serine proteases in the absence of plasminogen.


Asunto(s)
Síndrome Nefrótico , Animales , Canales Epiteliales de Sodio/genética , Ratones , Ratones Noqueados , Síndrome Nefrótico/genética , Plasminógeno , Sodio/metabolismo
17.
Protein Sci ; 30(3): 531-542, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33336515

RESUMEN

Focal adhesions (FAs) are integrin-containing protein complexes regulated by a network of hundreds of protein-protein interactions. They are formed in a spatiotemporal manner upon the activation of integrin transmembrane receptors, which is crucial to trigger cell adhesion and many other cellular processes including cell migration, spreading and proliferation. Despite decades of studies, a detailed molecular level understanding on how FAs are organized and function is lacking due to their highly complex and dynamic nature. However, advances have been made on studying key integrin activators, talin and kindlin, and their associated proteins, which are major components of nascent FAs critical for initiating the assembly of mature FAs. This review will discuss the structural and functional findings of talin and kindlin and their immediate interaction network, which will shed light upon the architecture of nascent FAs and how they act as seeds for FA assembly to dynamically regulate diverse adhesion-dependent physiological and pathological responses.


Asunto(s)
Proteínas del Citoesqueleto , Adhesiones Focales , Integrinas , Proteínas Musculares , Talina , Animales , Ratones , Ratones Noqueados , Modelos Moleculares , Unión Proteica , Transducción de Señal
19.
Dev Cell ; 55(2): 163-177.e6, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32780991

RESUMEN

The crosstalk between tumor cells and the adjacent normal epithelium contributes to cancer progression, but its regulators have remained elusive. Here, we show that breast cancer cells maintained in hypoxia release small extracellular vesicles (sEVs) that activate mitochondrial dynamics, stimulate mitochondrial movements, and promote organelle accumulation at the cortical cytoskeleton in normal mammary epithelial cells. This results in AKT serine/threonine kinase (Akt) activation, membrane focal adhesion turnover, and increased epithelial cell migration. RNA sequencing profiling identified integrin-linked kinase (ILK) as the most upregulated pathway in sEV-treated epithelial cells, and genetic or pharmacologic targeting of ILK reversed mitochondrial reprogramming and suppressed sEV-induced cell movements. In a three-dimensional (3D) model of mammary gland morphogenesis, sEV treatment induced hallmarks of malignant transformation, with deregulated cell death and/or cell proliferation, loss of apical-basal polarity, and appearance of epithelial-to-mesenchymal transition (EMT) markers. Therefore, sEVs released by hypoxic breast cancer cells reprogram mitochondrial dynamics and induce oncogenic changes in a normal mammary epithelium.


Asunto(s)
Transformación Celular Neoplásica/patología , Transición Epitelial-Mesenquimal/fisiología , Dinámicas Mitocondriales/fisiología , Microambiente Tumoral/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Humanos , Glándulas Mamarias Humanas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
20.
FASEB J ; 34(9): 11529-11545, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32686880

RESUMEN

Thrombospondin-4 (TSP4) is a pro-angiogenic protein that has been implicated in tissue remodeling and local vascular inflammation. TSP4 and, in particular, its SNP variant, P387 TSP4, have been associated with cardiovascular disease. Macrophages are central to initiation and resolution of inflammation and development of atherosclerotic lesions, but the effects of the P387 TSP4 on macrophages remain essentially unknown. We examined the effects of the P387 TSP4 variant on macrophages in cell culture and in vivo in a murine model of atherosclerosis. Furthermore, the levels and distributions of the two TSP4 variants were assessed in human atherosclerotic arteries. In ApoE-/- /P387-TSP4 knock-in mice, lesions size measured by Oil Red O did not change, but the lesions accumulated more macrophages than lesions bearing A387 TSP4. The levels of inflammatory markers were increased in lesions of ApoE-/- /P387-TSP4 knock-in mice compared to ApoE-/- mice. Lesions in human arteries from individuals carrying the P387 variant had higher levels of TSP4 and higher macrophage accumulation. P387 TSP4 was more active in supporting adhesion of cultured human and mouse macrophages in experiments using recombinant TSP4 variants and in cells derived from P387-TSP4 knock-in mice. TSP4 supports the adhesion of macrophages and their accumulation in atherosclerotic lesions without changing the size of lesions. P387 TSP4 is more active in supporting these pro-inflammatory events in the vascular wall, which may contribute to the increased association of P387 TSP4 with cardiovascular disease.


Asunto(s)
Aterosclerosis/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Trombospondinas/metabolismo , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Línea Celular , Células Cultivadas , Citocinas/sangre , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/sangre , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Placa Aterosclerótica/genética , Polimorfismo de Nucleótido Simple , Trombospondinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA