Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7273, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949848

RESUMEN

Vertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored. Here we use ultrafast transient absorption spectroscopy with a broadband white-light probe to simultaneously resolve interlayer charge transfer and interlayer exciton formation dynamics in a MoSe2/WSe2 heterostructure. We observe an interlayer exciton formation timescale nearly an order of magnitude (~1 ps) longer than the interlayer charge transfer time (~100 fs). Microscopic calculations attribute this relative delay to an interplay of a phonon-assisted interlayer exciton cascade and thermalization, and excitonic wave-function overlap. Our results may explain the efficient photocurrent generation observed in optoelectronic devices based on TMD heterostructures, as the interlayer excitons are able to dissociate during thermalization.

2.
J Phys Chem C Nanomater Interfaces ; 126(7): 3569-3581, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35242271

RESUMEN

The search for synthetic materials that mimic natural photosynthesis by converting solar energy into other more useful forms of energy is an ever-growing research endeavor. Graphene-based materials, with their exceptional electronic and optical properties, are exemplary candidates for high-efficiency solar energy harvesting devices. High photoactivity can be conveniently achieved by functionalizing graphene with small molecule organic semiconductors whose band-gaps can be tuned by structural modification, leading to interactions between the π-conjugated electronic systems in both the semiconductor and graphene. Here we investigate the ultrafast transient optical properties of a cross-linked graphene-dye (diphenyl-dithiophenediketopyrrolopyrrole) nanohybrid material, in which oligomers of the organic semiconductor dye are covalently bound to a random network of few-layer graphene flakes, and compare the results to those obtained for the reference dye monomer. Using a combination of ultrafast transient absorption and two-dimensional electronic spectroscopy, we provide substantial evidence for photoinduced charge transfer that occurs within 18 ps in the nanohybrid system. Notably, subpicosecond photoinduced torsional relaxation observed in the constituent dye monomer is absent in the cross-linked nanohybrid system. Through density functional theory calculations, we compare the competing effects of covalent bonding, increasing conjugation length, and the presence of multiple graphene flakes. We find evidence that the observed ultrafast charge transfer process occurs through a superexchange mechanism in which the oligomeric dye bridge provides virtual states enabling charge transfer between graphene-dye covalent bond sites.

3.
Sci Adv ; 8(1): eabk0953, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34985947

RESUMEN

We report two-dimensional electronic spectroscopy (2DES) experiments on the bacterial reaction center (BRC) from purple bacteria, revealing hidden vibronic and excitonic structure. Through analysis of the coherent dynamics of the BRC, we identify multiple quasi-resonances between pigment vibrations and excitonic energy gaps, and vibronic coherence transfer processes that are typically neglected in standard models of photosynthetic energy transfer and charge separation. We support our assignment with control experiments on bacteriochlorophyll and simulations of the coherent dynamics using a reduced excitonic model of the BRC. We find that specific vibronic coherence processes can readily reveal weak exciton transitions. While the functional relevance of such processes is unclear, they provide a spectroscopic tool that uses vibrations as a window for observing excited state structure and dynamics elsewhere in the BRC via vibronic coupling. Vibronic coherence transfer reveals the upper exciton of the "special pair" that was weakly visible in previous 2DES experiments.

4.
Nano Lett ; 21(11): 4738-4743, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34037406

RESUMEN

Monolayer transition metal dichalcogenides (ML-TMDs) are two-dimensional semiconductors that stack to form heterostructures (HSs) with tailored electronic and optical properties. TMD/TMD-HSs like WS2/MoS2 have type II band alignment and form long-lived (nanosecond) interlayer excitons following sub-100 fs interlayer charge transfer (ICT) from the photoexcited intralayer exciton. While many studies have demonstrated the ultrafast nature of ICT processes, we still lack a clear physical understanding of ICT due to the trade-off between temporal and frequency resolution in conventional transient absorption spectroscopy. Here, we perform two-dimensional electronic spectroscopy (2DES), a method with both high frequency and temporal resolution, on a large-area WS2/MoS2 HS where we unambiguously time resolve both interlayer hole and electron transfer with 34 ± 14 and 69 ± 9 fs time constants, respectively. We simultaneously resolve additional optoelectronic processes including band gap renormalization and intralayer exciton coupling. This study demonstrates the advantages of 2DES in comprehensively resolving ultrafast processes in TMD-HS, including ICT.

5.
J Phys Chem Lett ; 9(22): 6631-6637, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30376340

RESUMEN

Bacteriochlorophyll a (BChla) is the most abundant pigment found in the Bacterial Reaction Center (BRC) and light-harvesting proteins of photosynthetic purple and green bacteria. Recent two-dimensional electronic spectroscopy (2DES) studies of photosynthetic pigment-protein complexes including the BRC and the Fenna-Matthews-Olson (FMO) complex have shown oscillatory signals, or coherences, whose physical origin has been hotly debated. To better understand the observations of coherence in larger photosynthetic systems, it is important to carefully characterize the spectroscopic signatures of the monomeric pigments. Prior spectroscopic studies of BChla have differed significantly in their observations, with some studies reporting little to no coherence. Here we present evidence of strong coherences in monomeric BChla in isopropanol using 2DES at 77 K. We resolve many modes with frequencies that correspond well with known vibrational modes. We confirm their vibrational origin by comparing the 2D spectroscopic signatures with expectations based on a purely vibrational model.


Asunto(s)
Bacterioclorofila A/química , 2-Propanol/química , Modelos Moleculares , Análisis Espectral/métodos , Vibración
6.
J Phys Chem Lett ; 9(18): 5219-5225, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30136848

RESUMEN

The bacterial reaction center (BRC) serves as an important model system for understanding the charge separation processes in photosynthesis. Knowledge of the electronic structure of the BRC is critical for understanding its charge separation mechanism. While it is well-accepted that the "special pair" pigments are strongly coupled, the degree of coupling among other BRC pigments has been thought to be relatively weak. Here we study the W(M250)V mutant BRC by two-color two-dimensional electronic spectroscopy to correlate changes in the Q x region with excitation of the Q y transitions. The resulting Q y-Q x cross-peaks provide a sensitive measure of the electronic interactions throughout the BRC pigment network and complement one-color 2D studies in which such interactions are often obscured by energy transfer and excited-state absorption signals. Our observations should motivate the refinement of electronic structure models of the BRC to facilitate improved understanding of the charge separation mechanism.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Electrones , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fotosíntesis , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Teoría Cuántica , Rhodobacter sphaeroides/metabolismo , Espectrofotometría Infrarroja
7.
Proc Natl Acad Sci U S A ; 115(14): 3563-3568, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555738

RESUMEN

In the initial steps of photosynthesis, reaction centers convert solar energy to stable charge-separated states with near-unity quantum efficiency. The reaction center from purple bacteria remains an important model system for probing the structure-function relationship and understanding mechanisms of photosynthetic charge separation. Here we perform 2D electronic spectroscopy (2DES) on bacterial reaction centers (BRCs) from two mutants of the purple bacterium Rhodobacter capsulatus, spanning the Q y absorption bands of the BRC. We analyze the 2DES data using a multiexcitation global-fitting approach that employs a common set of basis spectra for all excitation frequencies, incorporating inputs from the linear absorption spectrum and the BRC structure. We extract the exciton energies, resolving the previously hidden upper exciton state of the special pair. We show that the time-dependent 2DES data are well-represented by a two-step sequential reaction scheme in which charge separation proceeds from the excited state of the special pair (P*) to P+HA- via the intermediate P+BA- When inhomogeneous broadening and Stark shifts of the B* band are taken into account we can adequately describe the 2DES data without the need to introduce a second charge-separation pathway originating from the excited state of the monomeric bacteriochlorophyll BA*.


Asunto(s)
Electrones , Modelos Biológicos , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Análisis Espectral/métodos , Cinética , Fotosíntesis
8.
J Phys Chem Lett ; 6(13): 2413-20, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26266711

RESUMEN

There has been considerable recent interest in the observation of coherent dynamics in photosynthetic systems by 2D electronic spectroscopy (2DES). In particular, coherences that persist during the "waiting time" in a 2DES experiment have been attributed to electronic, vibrational, and vibronic origins in various systems. The typical method for characterizing these coherent dynamics requires the acquisition of 2DES spectra as a function of waiting time, essentially a 3DES measurement. Such experiments require lengthy data acquisition times that degrade the signal-to-noise of the recorded coherent dynamics. We present a rapid and high signal-to-noise pulse-shaping-based approach for the characterization of coherent dynamics. Using chlorophyll a, we demonstrate that this method retains much of the information content of a 3DES measurement and provides insight into the physical origin of the coherent dynamics, distinguishing between ground and excited state coherences. It also enables high resolution determination of ground and excited state frequencies.


Asunto(s)
Análisis Espectral/métodos , Color , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA