RESUMEN
Mutations in HER2 occur in 2-4% of non-small cell lung cancer (NSCLC) and confer poor prognosis. ERBB-targeting tyrosine kinase inhibitors, approved for treating other HER2-dependent cancers, are ineffective in HER2 mutant NSCLC due to dose-limiting toxicities or suboptimal potency. We report the discovery of zongertinib (BI 1810631), a covalent HER2 inhibitor. Zongertinib potently and selectively blocks HER2, while sparing EGFR, and inhibits the growth of cells dependent on HER2 oncogenic driver events, including HER2-dependent human cancer cells resistant to trastuzumab deruxtecan. Zongertinib displays potent anti-tumor activity in HER2-dependent human NSCLC xenograft models and enhances the activities of antibody-drug conjugates and KRASG12C inhibitors, without causing obvious toxicities. The preclinical efficacy of zongertinib translates in objective responses in patients with HER2-dependent tumors, including cholangiocarcinoma (SDC4-NRG1 fusion) and breast cancer (V777L HER2 mutation) thus supporting the ongoing clinical development of zongertinib.
RESUMEN
Mutations in the Kirsten rat sarcoma viral oncogene homolog (KRAS) protein are highly prevalent in cancer. However, small-molecule concepts that address oncogenic KRAS alleles remain elusive beyond replacing glycine at position 12 with cysteine (G12C), which is clinically drugged through covalent inhibitors. Guided by biophysical and structural studies of ternary complexes, we designed a heterobifunctional small molecule that potently degrades 13 out of 17 of the most prevalent oncogenic KRAS alleles. Compared with inhibition, KRAS degradation results in more profound and sustained pathway modulation across a broad range of KRAS mutant cell lines, killing cancer cells while sparing models without genetic KRAS aberrations. Pharmacological degradation of oncogenic KRAS was tolerated and led to tumor regression in vivo. Together, these findings unveil a new path toward addressing KRAS-driven cancers with small-molecule degraders.
Asunto(s)
Antineoplásicos , Neoplasias , Quimera Dirigida a la Proteólisis , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Alelos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Quimera Dirigida a la Proteólisis/química , Quimera Dirigida a la Proteólisis/farmacología , Quimera Dirigida a la Proteólisis/uso terapéuticoRESUMEN
KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients1-7. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation. Here we report the discovery and characterization of a non-covalent inhibitor that binds preferentially and with high affinity to the inactive state of KRAS while sparing NRAS and HRAS. Although limited to only a few amino acids, the evolutionary divergence in the GTPase domain of RAS isoforms was sufficient to impart orthosteric and allosteric constraints for KRAS selectivity. The inhibitor blocked nucleotide exchange to prevent the activation of wild-type KRAS and a broad range of KRAS mutants, including G12A/C/D/F/V/S, G13C/D, V14I, L19F, Q22K, D33E, Q61H, K117N and A146V/T. Inhibition of downstream signalling and proliferation was restricted to cancer cells harbouring mutant KRAS, and drug treatment suppressed KRAS mutant tumour growth in mice, without having a detrimental effect on animal weight. Our study suggests that most KRAS oncoproteins cycle between an active state and an inactive state in cancer cells and are dependent on nucleotide exchange for activation. Pan-KRAS inhibitors, such as the one described here, have broad therapeutic implications and merit clinical investigation in patients with KRAS-driven cancers.
Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Animales , Ratones , Peso Corporal , Activación Enzimática , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Nucleótidos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal/efectos de los fármacos , División Celular/efectos de los fármacos , Especificidad por SustratoRESUMEN
Genetic networks are characterized by extensive buffering. During tumor evolution, disruption of functional redundancies can create de novo vulnerabilities that are specific to cancer cells. Here, we systematically search for cancer-relevant paralog interactions using CRISPR screens and publicly available loss-of-function datasets. Our analysis reveals >2,000 candidate dependencies, several of which we validate experimentally, including CSTF2-CSTF2T, DNAJC15-DNAJC19, FAM50A-FAM50B, and RPP25-RPP25L. We provide evidence that RPP25L can physically and functionally compensate for the absence of RPP25 as a member of the RNase P/MRP complexes in tRNA processing. Our analysis also reveals unexpected redundancies between sex chromosome genes. We show that chrX- and chrY-encoded paralogs, such as ZFX-ZFY, DDX3X-DDX3Y, and EIF1AX-EIF1AY, are functionally linked. Tumor cell lines from male patients with loss of chromosome Y become dependent on the chrX-encoded gene. We propose targeting of chrX-encoded paralogs as a general therapeutic strategy for human tumors that have lost the Y chromosome.
Asunto(s)
Neoplasias , Oncogenes , ARN Helicasas DEAD-box/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Masculino , Antígenos de Histocompatibilidad Menor/metabolismo , Neoplasias/genética , Proteínas de Unión al ARN/genética , Cromosomas Sexuales/metabolismo , Cromosoma X , Cromosoma YRESUMEN
Focal adhesion tyrosine kinase (PTK2) is often overexpressed in human hepatocellular carcinoma (HCC), and several reports have linked PTK2 depletion and/or pharmacological inhibition to reduced tumorigenicity. However, the clinical relevance of targeting PTK2 still remains to be proven. Here, we present two highly selective and functional PTK2 proteolysis-targeting chimeras utilizing von Hippel-Lindau and cereblon ligands to hijack E3 ligases for PTK2 degradation. BI-3663 (cereblon-based) degrades PTK2 with a median DC50 of 30 nM to >80% across a panel of 11 HCC cell lines. Despite effective PTK2 degradation, these compounds did not phenocopy the reported antiproliferative effects of PTK2 depletion in any of the cell lines tested. By disclosing these compounds, we hope to provide valuable tools for the study of PTK2 degradation across different biological systems.
Asunto(s)
Quinasa 1 de Adhesión Focal/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes/metabolismo , Línea Celular Tumoral , Proliferación Celular , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Ligandos , Proteolisis , Interferencia de ARNRESUMEN
Defining direct targets of transcription factors and regulatory pathways is key to understanding their roles in physiology and disease. We combined SLAM-seq [thiol(SH)-linked alkylation for the metabolic sequencing of RNA], a method for direct quantification of newly synthesized messenger RNAs (mRNAs), with pharmacological and chemical-genetic perturbation in order to define regulatory functions of two transcriptional hubs in cancer, BRD4 and MYC, and to interrogate direct responses to BET bromodomain inhibitors (BETis). We found that BRD4 acts as general coactivator of RNA polymerase II-dependent transcription, which is broadly repressed upon high-dose BETi treatment. At doses triggering selective effects in leukemia, BETis deregulate a small set of hypersensitive targets including MYC. In contrast to BRD4, MYC primarily acts as a selective transcriptional activator controlling metabolic processes such as ribosome biogenesis and de novo purine synthesis. Our study establishes a simple and scalable strategy to identify direct transcriptional targets of any gene or pathway.
Asunto(s)
Antineoplásicos/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Genes Reguladores , Leucemia Mieloide/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular , Relación Dosis-Respuesta a Droga , Humanos , Leucemia Mieloide/genética , Terapia Molecular Dirigida , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-myc/genética , Purinas/biosíntesis , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ribosomas/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Transcripción GenéticaRESUMEN
Bromodomain and extra-terminal (BET) protein inhibitors have been reported as treatment options for acute myeloid leukemia (AML) in preclinical models and are currently being evaluated in clinical trials. This work presents a novel potent and selective BET inhibitor (BI 894999), which has recently entered clinical trials (NCT02516553). In preclinical studies, this compound is highly active in AML cell lines, primary patient samples, and xenografts. HEXIM1 is described as an excellent pharmacodynamic biomarker for target engagement in tumors as well as in blood. Mechanistic studies show that BI 894999 targets super-enhancer-regulated oncogenes and other lineage-specific factors, which are involved in the maintenance of the disease state. BI 894999 is active as monotherapy in AML xenografts, and in addition leads to strongly enhanced antitumor effects in combination with CDK9 inhibitors. This treatment combination results in a marked decrease of global p-Ser2 RNA polymerase II levels and leads to rapid induction of apoptosis in vitro and in vivo. Together, these data provide a strong rationale for the clinical evaluation of BI 894999 in AML.
Asunto(s)
Antineoplásicos/administración & dosificación , Elementos de Facilitación Genéticos/efectos de los fármacos , Flavonoides/administración & dosificación , Perfilación de la Expresión Génica/métodos , Leucemia Mieloide Aguda/tratamiento farmacológico , Piperidinas/administración & dosificación , Proteínas/antagonistas & inhibidores , Pirazinas/administración & dosificación , Triazoles/administración & dosificación , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Regulación hacia Abajo , Sinergismo Farmacológico , Quimioterapia Combinada , Flavonoides/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Piperidinas/farmacología , Pirazinas/farmacología , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Factores de Transcripción , Triazoles/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The FASTK family proteins have recently emerged as key post-transcriptional regulators of mitochondrial gene expression. FASTK, the founding member and its homologs FASTKD1-5 are architecturally related RNA-binding proteins, each having a different function in the regulation of mitochondrial RNA biology, from mRNA processing and maturation to ribosome assembly and translation. In this review, we outline the structure, evolution and function of these FASTK proteins and discuss the individual role that each has in mitochondrial RNA biology. In addition, we highlight the aspects of FASTK research that still require more attention.
Asunto(s)
Regulación de la Expresión Génica , Proteínas Mitocondriales/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al ARN/genética , ARN/genética , Humanos , Proteínas Mitocondriales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial , Proteínas de Unión al ARN/metabolismoRESUMEN
When Escherichia coli encounters stress, the endoribonuclease MazF initiates a post-transcriptional response that results in the reprogramming of protein synthesis. By removing the 3Î-terminus of the 16S rRNA, MazF generates specialized ribosomes that selectively translate mRNAs likewise processed by MazF. Given the energy required for de novo ribosome biosynthesis, we considered the existence of a repair mechanism operating upon stress relief to recycle the modified ribosomes. Here, we show that the stress-ribosomes and the 3Î-terminal 16S rRNA fragment are stable during adverse conditions. Moreover, employing in vitro and in vivo approaches we demonstrate that the RNA ligase RtcB catalyzes the re-ligation of the truncated 16S rRNA present in specialized ribosomes Thereby their ability to translate canonical mRNAs is fully restored. Together, our findings not only provide a physiological function for the RNA ligase RtcB in bacteria but highlight the reversibility of ribosome heterogeneity, a crucial but hitherto undescribed concept for translational regulation.
Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Proteínas de Unión al ADN/genética , Endorribonucleasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Biosíntesis de Proteínas , Escherichia coli/enzimología , Heterogeneidad Genética , ARN Ribosómico 16S , RibosomasRESUMEN
Mitochondrial RNA processing is an essential step for the synthesis of the components of the electron transport chain in all eukaryotic organisms, yet several aspects of mitochondrial RNA biogenesis and regulation are not sufficiently understood. RNA interactome capture identified several disease-relevant RNA-binding proteins (RBPs) with noncanonical RNA-binding architectures, including all six members of the FASTK (FAS-activated serine/threonine kinase) family of proteins. A mutation within one of these newly assigned FASTK RBPs, FASTKD2, causes a rare form of Mendelian mitochondrial encephalomyopathy. To investigate whether RNA binding of FASTKD2 contributes to the disease phenotype, we identified the RNA targets of FASTKD2 by iCLIP. FASTKD2 interacts with a defined set of mitochondrial transcripts including 16S ribosomal RNA (RNR2) and NADH dehydrogenase subunit 6 (ND6) messenger RNA. CRISPR-mediated deletion of FASTKD2 leads to aberrant processing and expression of RNR2 and ND6 mRNA that encodes a subunit of the respiratory complex I. Metabolic phenotyping of FASTKD2-deficient cells reveals impaired cellular respiration with reduced activities of all respiratory complexes. This work identifies key aspects of the molecular network of a previously uncharacterized, disease-relevant RNA-binding protein, FASTKD2, by a combination of genomic, molecular, and metabolic analyses.
Asunto(s)
Proteínas Mitocondriales/genética , Biosíntesis de Proteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al ARN/genética , ARN/genética , Línea Celular , Respiración de la Célula/genética , Células HEK293 , Humanos , Mitocondrias/genética , NADH Deshidrogenasa/genética , ARN Mensajero/genética , ARN Mitocondrial , ARN Ribosómico 16S/genéticaRESUMEN
The unfolded protein response (UPR) is a conserved stress-signaling pathway activated after accumulation of unfolded proteins within the endoplasmic reticulum (ER). Active UPR signaling leads to unconventional, enzymatic splicing of XBP1 mRNA enabling expression of the transcription factor XBP1s to control ER homeostasis. While IRE1 has been identified as the endoribonuclease required for cleavage of this mRNA, the corresponding ligase in mammalian cells has remained elusive. Here, we report that RTCB, the catalytic subunit of the tRNA ligase complex, and its co-factor archease mediate XBP1 mRNA splicing both in vitro and in vivo. Depletion of RTCB in plasma cells of Rtcb(fl/fl) Cd23-Cre mice prevents XBP1s expression, which normally is strongly induced during plasma cell development. RTCB-depleted plasma cells show reduced and disorganized ER structures as well as severe defects in antibody secretion. Targeting RTCB and/or archease thus represents a promising strategy for the treatment of a growing number of diseases associated with elevated expression of XBP1s.
Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Anticuerpos/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Plasmáticas/fisiología , Proteínas/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Ratones , ARN Mensajero/genética , Proteínas de Unión al ARN , Factores de Transcripción del Factor Regulador X , Factores de Transcripción/genética , Proteína 1 de Unión a la X-BoxRESUMEN
RNA ligases have essential roles in many cellular processes in eukaryotes, archaea and bacteria, including in RNA repair and stress-induced splicing of messenger RNA. In archaea and eukaryotes, RNA ligases also have a role in transfer RNA splicing to generate functional tRNAs required for protein synthesis. We recently identified the human tRNA splicing ligase, a multimeric protein complex with RTCB (also known as HSPC117, C22orf28, FAAP and D10Wsu52e) as the essential subunit. The functions of the additional complex components ASW (also known as C2orf49), CGI-99 (also known as C14orf166), FAM98B and the DEAD-box helicase DDX1 in the context of RNA ligation have remained unclear. Taking advantage of clusters of eukaryotic orthologous groups, here we find that archease (ARCH; also known as ZBTB8OS), a protein of unknown function, is required for full activity of the human tRNA ligase complex and, in cooperation with DDX1, facilitates the formation of an RTCB-guanylate intermediate central to mammalian RNA ligation. Our findings define a role for DDX1 in the context of the human tRNA ligase complex and suggest that the widespread co-occurrence of archease and RtcB proteins implies evolutionary conservation of their functional interplay.
Asunto(s)
Proteínas Portadoras/metabolismo , ARN Helicasas DEAD-box/metabolismo , Complejos Multienzimáticos/metabolismo , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/metabolismo , Empalme del ARN , ARN de Transferencia/metabolismo , Dominio Catalítico , Supervivencia Celular , Secuencia Conservada , Evolución Molecular , Humanos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/aislamiento & purificación , Proteínas , ARN Ligasa (ATP)/aislamiento & purificación , ARN de Transferencia/genética , Proteínas de Unión al ARNRESUMEN
The process of tRNA splicing entails removal of an intron by TSEN (tRNA-splicing endonuclease) and ligation of the resulting exon halves to generate functional tRNAs. In mammalian cells, the RNA kinase CLP1 (cleavage and polyadenylation factor I subunit) associates with TSEN and phosphorylates the 3' exon at the 5' end in vitro, suggesting a role for CLP1 in tRNA splicing. Interestingly, recent data suggest that the ATP-binding and/or hydrolysis capacity of CLP1 is required to enhance pre-tRNA cleavage. In vivo, the lack of CLP1 kinase activity leads to progressive motor neuron loss and accumulation of novel 5' leader-5' exon tRNA fragments. We have extended the investigation of the biochemical requirements in pre-tRNA splicing and found that ß-γ-hydrolysable ATP is crucial for the productive generation of exon halves. In addition, we provide evidence that phosphorylation of the TSEN complex components supports efficient pre-tRNA cleavage. Taken together, our data improve the mechanistic understanding of mammalian pre-tRNA processing and its regulation.
Asunto(s)
Adenosina Trifosfato/metabolismo , Endorribonucleasas/metabolismo , Intrones , Precursores del ARN/genética , Empalme del ARN , ARN de Transferencia/genética , Animales , Humanos , Hidrólisis , Ratones , FosforilaciónRESUMEN
Heterochromatin is important for genome integrity and stabilization of gene-expression programs. We have identified the transcription factors Pax3 and Pax9 as redundant regulators of mouse heterochromatin, as they repress RNA output from major satellite repeats by associating with DNA within pericentric heterochromatin. Simultaneous depletion of Pax3 and Pax9 resulted in dramatic derepression of major satellite transcripts, persistent impairment of heterochromatic marks and defects in chromosome segregation. Genome-wide analyses of methylated histone H3 at Lys9 showed enrichment at intergenic major satellite repeats only when these sequences retained intact binding sites for Pax and other transcription factors. Additionally, bioinformatic interrogation of all histone methyltransferase Suv39h-dependent heterochromatic repeat regions in the mouse genome revealed a high concordance with the presence of transcription factor binding sites. These data define a general model in which reiterated arrangement of transcription factor binding sites within repeat sequences is an intrinsic mechanism of the formation of heterochromatin.
Asunto(s)
Heterocromatina/metabolismo , Factores de Transcripción Paired Box/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Ciclo Celular/genética , Segregación Cromosómica , ADN Satélite/metabolismo , Fibroblastos/metabolismo , Genoma , Heterocromatina/genética , Histonas/metabolismo , Lisina/metabolismo , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Mutantes , Datos de Secuencia Molecular , Factor de Transcripción PAX3 , Factor de Transcripción PAX5/genética , Factor de Transcripción PAX5/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX9 , Factores de Transcripción Paired Box/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismoRESUMEN
The discovery of discontiguous tRNA genes triggered studies dissecting the process of tRNA splicing. As a result, we have gained detailed mechanistic knowledge on enzymatic removal of tRNA introns catalyzed by endonuclease and ligase proteins. In addition to the elucidation of tRNA processing, these studies facilitated the discovery of additional functions of RNA ligases such as RNA repair and non-conventional mRNA splicing events. Recently, the identification of a new type of RNA ligases in bacteria, archaea, and humans closed a long-standing gap in the field of tRNA processing. This review summarizes past and recent findings in the field of tRNA splicing with a focus on RNA ligation as it preferentially occurs in archaea and humans. In addition to providing an integrated view of the types and phyletic distribution of RNA ligase proteins known to date, this survey also aims at highlighting known and potential accessory biological functions of RNA ligases.
Asunto(s)
Evolución Molecular , ARN Ligasa (ATP)/clasificación , ARN Ligasa (ATP)/metabolismo , Empalme del ARN , ARN de Transferencia/metabolismo , Archaea , Humanos , ARN Ligasa (ATP)/genéticaRESUMEN
Splicing of mammalian precursor transfer RNA (tRNA) molecules involves two enzymatic steps. First, intron removal by the tRNA splicing endonuclease generates separate 5' and 3' exons. In animals, the second step predominantly entails direct exon ligation by an elusive RNA ligase. Using activity-guided purification of tRNA ligase from HeLa cell extracts, we identified HSPC117, a member of the UPF0027 (RtcB) family, as the essential subunit of a tRNA ligase complex. RNA interference-mediated depletion of HSPC117 inhibited maturation of intron-containing pre-tRNA both in vitro and in living cells. The high sequence conservation of HSPC117/RtcB proteins is suggestive of RNA ligase roles of this protein family in various organisms.