Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cutan Ocul Toxicol ; : 1-9, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39392009

RESUMEN

INTRODUCTION: Melanoma is still one of the deadliest cancers whose prevalence has increased in recent decades. Today, many polysaccharides and their bioactive compounds have been of special importance in modern biotechnology. They have various biological and therapeutic properties. they can regulate and strengthen the immune system, lower blood pressure and cholesterol, and reduce bacterial and viral infections. According to studies, these compounds also have antitumor properties. we investigated the cytotoxic effects of ß-Glucan obtained from solid-state fermentation (SSF) of edible medicinal mushroom Lentinus edodes on cancerous skin cells. MATERIALS AND METHODS: The mitochondria were isolated from melanoma cells via differential centrifugation and treated with various concentrations (30, 45, 60, 90, 120, and 240 µg/ml) of ß-Glucan extract. Then, they were subjected to MTT, ROS, MMP decline, mitochondrial swelling, cytochrome c release, and flow cytometry assays. RESULTS: The results of the MTT assay showed that IC50 of ß-Glucan extract was 60 µg/ml, and it induced a selectively significant (P < 0.05) concentration-dependent decrease in the SDH activity in cancerous skin mitochondria. At higher concentrations, no such effect was observed. The ROS results also showed that 30, 45, and 60 µg/ml concentrations of ß-Glucan extract significantly increased ROS. However, no such effect was observed at higher concentrations. MMP decline and the release of cytochrome c in cancer groups mitochondria and swelling were significantly increased at 30, 45, and 60 µg/ml compared to the control group. At higher concentrations, no such effect was observed. ß-Glucan extract at 60 µg/ml concentration increased apoptosis on melanoma cells, while it had no effect on control non-tumour cells. DISCUSSION AND CONCLUSION: Based on these results, ß-Glucan extract at 30, 45, and 60 µg/ml showed a cytotoxic effect, while no such effect was observed at higher concentrations. Overall, it seems that ß-Glucan has antioxidant and free radical scavenging effects on cancer cells at higher concentrations.

2.
Asian Pac J Cancer Prev ; 25(10): 3717-3723, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39471040

RESUMEN

OBJECTIVE: Hepatocellular carcinoma (HCC) is a significant type of liver cancer. In spite of many treatment approaches, its treatment is still associated with challenges. Therefore, new approaches with minimal side effects are necessary for its treatment. Sea cucumbers are marine animals that have many biologically active compounds. They are rich in useful compounds and have high nutritional value. It has been reported to have many pharmacological effects, including anticancer. This research was designed to investigate the effects of Holothuria lessoni (H. lessoni) sea cucumber toxicity in HCC model rats. METHODS: Cancer was induced in rats using diethyl nitrosamine (200 mg/kg DEN/single dose) + 2-acetylaminofluorene (2-AAF/ dietary/ 0.02% w/w for two weeks). After 15 weeks, hepatocytes and mitochondria were isolated to evaluate toxicity tests. RESULT: The results of the study showed that H. lessoni (62.5, 125, and 250 µg/ml) were able to cause toxicity only in cancerous mitochondria by increasing the level of free radicals, disrupting the permeability of the mitochondrial membrane, and initiating cell death signaling (p<0.05). CONCLUSION: It was suggested that H. lessoni sea cucumber may be beneficial in the treatment of HCC along with selected drugs. However, more studies are needed.


Asunto(s)
Carcinoma Hepatocelular , Holothuria , Neoplasias Hepáticas , Animales , Ratas , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inducido químicamente , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inducido químicamente , Dietilnitrosamina/toxicidad , 2-Acetilaminofluoreno/toxicidad , Masculino , Neoplasias Hepáticas Experimentales/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Modelos Animales de Enfermedad , Pepinos de Mar , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Apoptosis/efectos de los fármacos
3.
Toxicol Rep ; 13: 101729, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39295952

RESUMEN

Dibutyl phthalate (DBP) is a phthalate ester with wide application in industrial products, so human exposure can happen in workplaces and environment. Conflicting results have been acquired in researches which measured the influences of phthalates contact on immune responses in laboratory animals. Nevertheless, the straight influence of DBP on human lymphocytes and entire mechanisms of its effect against these cells continue to be unexplored. The major purpose of present research was to evaluate the mechanisms which lead to the DBP toxicity on human lymphocytes using accelerated cytotoxicity mechanisms screening (ACMS) technique. Cell viability was determined following12h incubation of lymphocytes with 0.05-1 mM DBP, and mechanistic parameters were assessed after 2, 4 and 6 h of lymphocyte treatment with ½ the IC5012h (0.3 mM), the IC5012h (0.6 mM) and twice the IC5012h (1.2 mM) of DBP. The IC5012 h of a chemical/toxicant is defined as concentration that kills 50 % of cells after 12 h of exposure. The results indicate that DBP exerts toxic effects on isolated human lymphocytes, probably through mitochondrial and lysosomal damage induced by glutathione depletion and oxidative stress. In this study, suppression of cytokines (IL2, INF-gamma and TNF-alpha) production and increase in intracellular calcium were also related to DBP induced lymphocyte toxicity.

4.
Iran J Pharm Res ; 23(1): e146033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108644

RESUMEN

Background: Doxorubicin (DOX) is used in the treatment of various cancers and has good effectiveness. However, its therapeutic use is limited due to its effects on various organs and healthy cells. Doxorubicin can affect the kidneys and cause toxicity. Evidence shows that DOX induces nephrotoxicity through oxidative stress. Objectives: In this research, we examined the effect of mitochondrial transplantation on improving mitochondrial and cellular toxicity caused by DOX on renal proximal tubular cells (RPTCs). Methods: The research measured 7 toxicity parameters, including cell lysis, reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) decline, GSH and GSSG content, lipid peroxidation (LPO), adenosine triphosphate (ATP) content, and Caspase-3 activity (the final mediator of apoptosis). Active fresh mitochondria were prepared from Wistar rat kidney. Results: The findings indicated that DOX caused cytotoxicity in RPTCs. Additionally, DOX induced oxidative stress by increasing the level of reactive oxygen species, reducing glutathione content, and elevating lipid peroxidation. Moreover, it led to damage to the mitochondrial membrane, increased caspase-3 activity, and decreased ATP content. Mitochondrial transplantation, as a new therapeutic approach, reduced oxidative stress, mitochondrial membrane damage, and apoptosis caused by DOX in RPTCs. Furthermore, this therapeutic approach increased the ATP content in RPTCs. Conclusions: Our study suggests that this therapeutic approach could be helpful in the treatment of drug-induced nephrotoxicity.

5.
Cutan Ocul Toxicol ; : 1-8, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39115252

RESUMEN

INTRODUCTION: Melanoma is known as a highly lethal cancer. In melanoma cells, apoptosis signalling which relies heavily on the acute activity of mitochondria and reactive oxygen species (ROS) formation is suppressed. Our previous studies on natural compounds on melanoma suggested that mitochondria are a potential target for the melanoma treatment by selective cytotoxic effect of them. The black soldier fly is an important environmental protectant insect that based on recent studies induces apoptosis in liver and colorectal carcinoma cells through the activation of caspase 3, 8, and 9 and ultimately inhibits the growth of cancer cells. PURPOSE: This study was designed to evaluate the selective apoptotic effect of the n-hexane BSFL extract (BSFLE) on skin mitochondria. MATERIALS AND METHODS: The mitochondria isolated from melanoma cells were treated with various concentrations (1500, 3000, and 6000 µg/ml) of n-hexane BSFLE Then MTT viability assay, ROS determination, Mitochondrial Membrane Potential (MMP), mitochondrial swelling, cytochrome c release determination, and % apoptosis were performed. RESULTS: MTT assay showed that different concentrations of n-hexane BSFLE significantly (P < 0.05) decreased the SDH activity in cancerous skin mitochondria with the IC50. The ROS production and mitochondrial swelling results also showed that all concentrations of BSFL extracts significantly increased. MMP decline and the release of cytochrome c in cancer groups mitochondria. BSFLE increased apoptosis on melanoma cells. DISCUSSION AND CONCLUSION: It is suggested that n-hexane BSFLE compounds selectively induce a cascade of proapoptotic events that are probably defective in cancer cells. Most of these compounds target the mitochondrial transient pore caused by disruption of the mitochondrial respiratory chain. These events lead to disruption of the temporary permeability of mitochondria, swelling of mitochondria and finally the formation of apoptosome in the cytosol.

6.
Eur J Pharmacol ; 978: 176776, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38936451

RESUMEN

The use of NPS compounds is increasing, and impairment in spatial learning and memory is a growing concern. Alpha-pyrrolidinovalerophenone (α-PVP) consumption, as a commonly used NPS, can impair spatial learning and memory via the brain mitochondrial dysfunction mechanism. Liraglutide isone of the most well-known Glucagon-Like Peptide 1 (GLP-1) agonists that is used as an anti-diabetic and anti-obesity drug. According to current research, Liraglutide likely ameliorates cognitive impairment in neurodegenerative conditions and substance use disorders. Hence, the purpose of this study is examining the effect of Liraglutide on α-PVP-induced spatial learning and memory problems due to brain mitochondrial dysfunction. Wistar rats (8 in each group) received α-PVP (20 mg/kg/d for 10 consecutive days, intraperitoneally (I.P.)). Then, Liraglutide was administered at 47 and 94 µg/kg/d, I.P., for 4 weeks following the α-PVP administration. The Morris Water Maze (MWM) task evaluated spatial learning and memory 24 h after Liraglutide treatment. Bedside, brain mitochondrial activity parameters, including reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), cytochrome c release, mitochondrial outer membrane damage and swelling, and brain ADP/ATP ratio, were studied. Our results showed that Liraglutide ameliorated α-PVP-induced spatial learning and memory impairments through alleviating brain mitochondrial dysfunction (which is indicated by increasing ROS formation, collapsed MMP, mitochondrial outer membrane damage, cytochrome c release, mitochondrial swelling, and increased brain ADP/ATP ratio). This study could be used as a starting point for future studies about the possible role of Liraglutide in ameliorating mitochondrial dysfunction leading to substance use disorder- induced cognitive impairment.


Asunto(s)
Encéfalo , Disfunción Cognitiva , Liraglutida , Mitocondrias , Pirrolidinas , Ratas Wistar , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Ratas , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/inducido químicamente , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
7.
Cell Biol Int ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682666

RESUMEN

The role of heavy metals such as lead (Pb) and cadmium (Cd) in the etiology of many diseases has been proven. Also, these heavy metals can affect the normal mitochondrial function. Mitochondrial administration therapy is one of the methods used by researchers to help improve mitochondrial defects and diseases. The use of isolated mitochondria as a therapeutic approach has been investigated in in vivo and in vitro studies. Accordingly, in this study, the effects of mitochondrial administration on the improvement of toxicity caused by Pb and Cd in renal proximal tubular cells (RPTC) have been investigated. The results showed that treatment to Pb and Cd caused an increase in the level of free radicals, lipid peroxidation (LPO) content, mitochondrial and lysosomal membrane damage, and also a decrease in the reduced glutathione content in RPTC. In addition, reports have shown an increase in oxidized glutathione content and changes in energy (ATP) levels. Following, the results have shown the protective role of mitochondrial administration in improving the toxicity caused by Pb and Cd in RPTC. Furthermore, the mitochondrial internalization into RPT cells is mediated through actin-dependent endocytosis. So, it could be suggested that the treatment of Pb- and Cd-induced cytotoxicity in RPTC could be carried out through mitochondria administration.

8.
Biochem Biophys Rep ; 38: 101669, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38434141

RESUMEN

Tenofovir, as nucleotide reverse transcriptase inhibitors (NRTIs), is used to prevent and cure HIV/AIDS. Ample evidence confirmed that the nephrotoxicity of tenofovir has been linked to mitochondrial dysfunction. It seems that transplantation with healthy mitochondria instead of damaged mitochondria may be a beneficial approach to therapy. Therefore, it decided to investigate the impact of mitotherapy on tenofovir against renal proximal tubular cells (RPTCs) toxicity by measurement of oxidative stress and cytotoxicity biomarkers and restoring of mitochondrial function on isolated mitochondria. EC50 of tenofovir was achieved at 40 µM following 2 h incubation in Earle's solution (pH = 7.4; 37 °C). Freshly isolated mitochondria (80 µg/ml) were added to damage RPTCs affected by tenofovir in treated groups. One Way ANOVA analysis showed that healthy mitochondrial transplantation decreased oxidative stress biomarkers following tenofovir toxicity in RPTCs. Our data revealed that mitotherapy makes cell survival possible in RPTCs affected by tenofovir. In addition, it supposed that a novel and ideal strategy for the treatment of chemicals-induced nephrotoxicity.

9.
Cutan Ocul Toxicol ; 43(1): 69-74, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37908111

RESUMEN

PURPOSE: Retinoblastoma (RB) is one of the most important cancers in children with a higher rate of prevalence in developing countries. Despite different approaches to the treatment of RB, it seems necessary to discover a new approach to its treatment. Today, mitochondria are recognised as an important target in the treatment of cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) have been studied by researchers due to their important biological effects. METHODS: In this study, the effects of SPIONs on mitochondria isolated from Y79 retinoblastoma cells were investigated. RESULTS: The results showed that SPIONs were able to increase the reactive oxygen species (ROS) level and subsequently damage the mitochondrial membrane and release cytochrome c a as one of the important pro-apoptotic proteins of RB mitochondria. Furthermore, the results indicated a decrease in cell viability and an increase in caspase-3 activity in Y79 retinoblastoma cells. CONCLUSIONS: These events can lead to the killing of cancerous mitochondria. Our results suggest that SPIONs can cause mitochondrial dysfunction and death in RB mitochondria.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Niño , Humanos , Retinoblastoma/tratamiento farmacológico , Retinoblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/toxicidad , Mitocondrias , Neoplasias de la Retina/tratamiento farmacológico , Neoplasias de la Retina/metabolismo
10.
Iran J Pharm Res ; 22(1): e135666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148888

RESUMEN

Background: Cisplatin-induced nephrotoxicity has been linked to a fundamental mechanism of mitochondrial dysfunction. A treatment called mitochondrial transplantation therapy can be used to replace damaged mitochondria with healthy mitochondria. Mitochondrial-related diseases may benefit from this approach. Objectives: We investigated the effect of mitochondrial transplantation on cisplatin-induced nephrotoxicity using freshly isolated mitochondria obtained from renal proximal tubular cells (RPTCs). Methods: Based on our previous findings, we hypothesized that direct exposure of healthy mitochondria to cisplatin-affected RPTCs might improve cytotoxicity markers and restore mitochondrial function. Therefore, the primary objective of this study was to determine whether newly isolated mitochondrial transplantation protected RPTCs from cisplatin-induced cytotoxicity. The supply of exogenous rat kidney mitochondria to cisplatin-affected RPTCs was also a goal of this study to investigate the possibility of gender differences. After the addition of cisplatin (100 µM), rat RPTCs (106 cells/mL) were suspended in Earle's solution (pH = 7.4) at 37°C for two hours. Freshly isolated mitochondria were extracted at 4°C and diluted in 100 and 200 µg/mL mitochondrial protein. Results: Statistical analysis revealed that transplantation of healthy mitochondria decreased ROS level, mitochondrial membrane potential (MMP) collapse, MDA level, glutathione depletion, lysosomal membrane damage, and caspase-3 activity induced by cisplatin in rat RPTCs. In addition, our results demonstrated that transplantation of female rat kidney mitochondria has higher protective activity at reducing toxicity parameters than male mitochondria. Conclusions: The findings reaffirmed that mitochondrial transplantation is a novel, potential, and promising therapeutic strategy for xenobiotic-induced nephrotoxicity.

11.
Iran J Pharm Res ; 22(1): e135315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148890

RESUMEN

Background: The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, and this issue is one of the major concerns in the pending years. T2DM causes numerous complications, including cognition, learning, and memory impairments. The positive effect of physical exercise as a popular approach has been shown in many chronic diseases. Further, the improvement effects of exercise on cognition and memory impairment have been noticed. Objectives: This study examines the possible preventative effects of physical exercise on spatial memory attenuation and brain mitochondrial dysfunction caused by T2DM. Methods: Male Wistar rats received treadmill exercise (30 min per day, five days per week for two or four weeks). Then, T2DM was induced by a high-fat diet and an injection of streptozotocin (30 mg/kg). Spatial learning and memory were assessed by the Morris water maze test. Further, brain mitochondrial function, including reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), mitochondrial swelling, outer membrane damage, cytochrome c release, and ADP/ATP ratio, were measured. Results: Impaired spatial memory in T2DM rats was observed. Furthermore, brain mitochondrial dysfunction was demonstrated proved by increased ROS generation, MMP collapse, mitochondrial swelling, outer membrane damage, cytochrome c release, and ADP/ATP ratio. Conversely, physical exercise, before diabetes onset, significantly ameliorated spatial memory impairment and brain mitochondrial dysfunction. Conclusions: This study reveals that physical exercise could prevent diabetes-induced spatial memory impairment. Moreover, it could ameliorate brain mitochondrial dysfunction as one of the possible underlying mechanisms of spatial memory impairment in T2DM.

12.
J Pharm Pharmacol ; 75(11): 1458-1466, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37738481

RESUMEN

OBJECTIVES: Exogenous mitochondria transplantation or mitotherapy can be used to swap out unhealthy mitochondria for functioning ones. Treatment of mitochondrial diseases using this approach may be beneficial. METHODS: In this study, we looked at the effect of transplanting newly isolated mitochondria on the toxicity that favipiravir (FAV) causes in renal proximal tubular cells (RPTCs). In this study, parameters such as lactate dehydrogenase (LDH) leakiness, reactive oxygen species (ROSs) production, damage to the lysosome membrane, reduced glutathione (GSH) content, extracellular oxidized glutathione (GSSG) content, GSH/GSSG ratio, ATP level, mitochondrial membrane potential (MMP) collapse, Bcl-2 content, and caspase-3 activity were used to assess the protective effects of mitochondrial transplantation against FAV-induced mitochondrial toxicity. KEY FINDINGS: The statistical analysis showed that the cytotoxicity, ROS production, MMP collapse, lysosomal damage, GSSG levels, and caspase-3 activity brought on by FAV in RPTCs were reduced by transplanting the healthy mitochondria. In addition, it led to an increase in ATP level, GSH content, Bcl-2 content, and GSH/GSSG ratio in RPTCs. CONCLUSIONS: A recent study found that mitochondrial transplantation is a powerful therapeutic approach for treating nephrotoxicity brought on by xenobiotics.


Asunto(s)
Mitocondrias , Estrés Oxidativo , Ratas , Animales , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Caspasa 3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Adenosina Trifosfato/metabolismo , Potencial de la Membrana Mitocondrial
13.
Neurosci Lett ; 815: 137491, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37734531

RESUMEN

Alzheimer's disease (AD) is a complex disorder with multiple underlying mechanisms. Existing treatment options mostly address symptom management and are associated with numerous side effects. Therefore, exploring alternative therapeutic agents derived from medicinal plants, which contain various bioactive compounds with diverse pharmacological effects, holds promise for AD treatment. This study aims to assess the protective effects of the hydroalcoholic extract of Allium jesdianum on cognitive dysfunction, mitochondrial and cellular parameters, as well as genetic parameters in an intracerebroventricular Streptozotocin (icv-STZ) induced rat model of AD. Male Wistar rats were injected with a single dose of STZ (3 mg/kg, icv) to establish a sporadic AD model. A. jesdianum extract (100, 200, and 400 mg/kg/day) and donepezil (5 mg/kg/day) were orally administered for 14 days following model induction. Cognitive function was evaluated using the radial arm water maze test. Mitochondrial toxicity parameters in various brain regions (whole brain, frontal cortex, hippocampus, and cerebellum) were assessed. Gene expression analysis of miR-330, miR-132, Bax, and Bcl-2 in isolated rat brain neurons was performed using RT-qPCR. A. jesdianum extract significantly attenuated cognitive dysfunction and mitigated mitochondrial toxicity induced by icv-STZ administration. Following STZ injection, there was upregulation of Bax gene expression and downregulation of miR-330, miR-132, and Bcl-2 gene expression. Treatment with A. jesdianum extract resulted in the reversal of the expression of these microRNAs and genes, indicating its potential for improving AD and reducing neuronal apoptosis. This study demonstrates the neuroprotective capabilities of A. jesdianum against STZ-induced oxidative stress and cognitive impairment in rats, highlighting its therapeutic potential in the management of AD.

14.
Toxicol Ind Health ; 39(10): 594-602, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37593903

RESUMEN

Most of the literature has focused on titanium dioxide (TiO2) nanoparticles (NPs) toxicity, showing the importance of oxidative stress, mitochondrial dysfunction, and cell death in TiO2-induced toxicity. For this purpose, in the current study, we investigated the protective role of antioxidant and mitochondrial/lysosomal protective agents to minimize TiO2 NPs-induced toxicity in human lymphocytes. Human lymphocytes were obtained from heathy individuals and treated with different concentrations (80, 160, and 320 µg/mL) of TiO2 NPs, and then human lymphocytes preincubated with butylated hydroxytoluene (BHT), cyclosporin A (CsA), and chloroquine separately were exposed to TiO2 NPs for 6 h. In all the above-mentioned treated groups, adverse parameters such as cytotoxicity, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), lysosomal membrane destabilization, the levels of malondialdehyde (MDA), and glutathione (GSH) were measured. The results showed that TiO2 nanoparticles induced cytotoxicity through ROS formation, MMP collapse, lysosomal damages, depletion of GSH, and lipid peroxidation. However, BHT as an antioxidant, CsA as a mitochondrial permeability transition (MPT) pore sealing agent, and chloroquine as a lysosomotropic agent, significantly inhibited all the TiO2 NPs-induced cellular and organelle toxicities. Thus, it seems that antioxidant and mitochondrial/lysosomal protective agents are promising preventive strategies against TiO2 NPs-induced toxicity.


Asunto(s)
Antioxidantes , Nanopartículas , Humanos , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Sustancias Protectoras , Lisosomas , Mitocondrias , Glutatión , Cloroquina/toxicidad , Linfocitos , Nanopartículas/toxicidad
15.
Bratisl Lek Listy ; 124(9): 690-698, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635667

RESUMEN

One of the important issues in urban areas is air pollution which causes respiratory disorders. A significant association between exposure to inhaled particulate matter (PM), mainly ultrafine particles, and increased neurological and pulmonary morbidity and mortality was observed in some research. This study aimed to demonstrate the relation between multi-wall carbon nanotubes (MWCNTs) inhalation and the carcinogenic effect of these materials in the brain and lungs. For this purpose, we investigated gene expression in rat brain and lung tissues induced by exposure to MWCNTs. Rats were exposed to MWCNTs in diameters of 10 and 100 nm (pure and impure) at a concentration of 5 mg/m3. Exposure was done through a whole-body exposure chamber for 5 h/day, 5 days/week for 14 days. After exposure, both brain and lung tissues were isolated to evaluate certain gene expressions including Bax, Bcl2, Rac1, Tp53, Mmp12, and Arc. The results showed that exposure to impure and pure MWCNTs (10 and 100 nm) at a concentration of 5 mg/m3 causes up-regulation or down-regulation of some of these genes. The results suggest that impure and pure MWCNTs (10 and 100 nm) can increase the risk of central nervous system disorders such as Alzheimer's disease and increase the risk of carcinogenesis in the lung tissues of rats exposed to MWCNTs (Tab. 2, Fig. 2, Ref. 64). Text in PDF www.elis.sk Keywords: multi-wall carbon nanotube, inhalation, gene expression, carcinogenicity, brain, lung.


Asunto(s)
Nanotubos de Carbono , Neoplasias , Animales , Ratas , Nanotubos de Carbono/toxicidad , Apoptosis , Encéfalo , Pulmón , Genes Relacionados con las Neoplasias
16.
Asian Pac J Cancer Prev ; 24(7): 2383-2388, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505770

RESUMEN

This study aimed to find out the mechanism of cytotoxic effects of galls of Quercus Brantii on A375 and SK-MEL-3 melanoma and AGO-1522 normal human fibroblast cell lines for the first time. Therefore, cell viability and cytotoxic activities were evaluated. Furthermore, ROS formation, lipid peroxidation, and release of cytochrome-c were also assessed. The results revealed that the extract of these galls at a concentration of 0.05 mg/ml significantly (P<0.001) increased cytotoxicity, ROS formation, TBARS formation, and cytochrome-c release in A375 and SK-MEL-3 melanoma cell lines compared to AGO-1522 normal human fibroblast. These results demonstrated that these galls can be considered a promising candidate which acts in synergy with anticancer agents used in the clinical treatment of human malignant melanoma.


Asunto(s)
Antineoplásicos , Melanoma , Quercus , Humanos , Quercus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Melanoma/patología , Antineoplásicos/farmacología , Citocromos , Apoptosis , Melanoma Cutáneo Maligno
17.
Toxicol Ind Health ; 39(7): 388-397, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37243687

RESUMEN

Para-phenylenediamine (PPD) is a derivative of benzene used as an ingredient in dyes, a photographic developing agent, and a component of engineered polymers. The carcinogenicity of PPD, which has been documented in several studies, may be related to its toxic effects on different compartments of the immune system. The main goal of this research was to evaluate the mechanism of the toxicity of PPD on human lymphocytes by exploiting the accelerated cytotoxicity mechanism screening (ACMS) technique. Lymphocytes were isolated from the blood of healthy persons using a Ficoll-Paque PLUS standard method. Assessment of cell viability was carried out 12 h following treatment of human lymphocytes with 0.25-1 mM PPD. For determination of cellular parameters, isolated human lymphocytes were incubated with 1/2 the IC50 (0.4 mM), the IC50 (0.8 mM), and twice the IC50 (1.6 mM) for 2, 4, and 6 h. Half maximal inhibitory concentration (IC50) is the concentration that reduces cell viability approximately 50% following treatment. The results of this study demonstrated that PPD-associated apoptosis in human lymphocytes was mainly through the enhancement of intracellular calcium, oxidative stress, and following adverse effect on lymphocyte organelles (like mitochondria and lysosomes). Lipid peroxidation, activation of caspase-3, and stimulation of cytokines (IL2, interferon-gamma (IFN-γ), and TNF-alpha) production were also observed in PPD-treated lymphocytes. Considering the results of this study, we can suggest an association between PPD carcinogenicity and its toxic effects on different compartments of the immune system.


Asunto(s)
Calcio , Linfocitos , Humanos , Especies Reactivas de Oxígeno , Apoptosis
18.
Toxicol Appl Pharmacol ; 467: 116497, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003365

RESUMEN

Novel psychoactive substances (NPS) consumption has increased in recent years, thus NPS-induced cognitive decline is a current source of concern. Alpha-pyrrolidinovalerophenone (α-PVP), as a member of NPS, is consumed throughout regions like Washington, D.C., Eastern Europe, and Central Asia. Mitochondrial dysfunction plays an essential role in NPS-induced cognitive impairment. Meanwhile, no investigations have been conducted regarding the α-PVP impact on spatial learning/memory and associated mechanisms. Consequently, our study investigated the α-PVP effect on spatial learning/memory and brain mitochondrial function. Wistar rats received different α-PVP doses (5, 10, and 20 mg/kg) intraperitoneally for 10 sequential days; 24 h after the last dose, spatial learning/memory was evaluated by the Morris Water Maze (MWM). Furthermore, brain mitochondrial protein yield and mitochondrial function variables (Mitochondrial swelling, succinate dehydrogenase (SDH) activity, lipid peroxidation, Mitochondrial Membrane Potential (MMP), Reactive oxygen species (ROS) level, brain ADP/ATP proportion, cytochrome c release, Mitochondrial Outer Membrane (MOM) damage) were examined. α-PVP higher dose (20 mg/kg) significantly impaired spatial learning/memory, mitochondrial protein yield, and brain mitochondrial function (caused reduced SDH activity, increased mitochondrial swelling, elevated ROS generation, increased lipid peroxidation, collapsed MMP, increased cytochrome c release, elevated brain ADP/ATP proportion, and MOM damage). Moreover, the lower dose of α-PVP (5 mg/kg) did not alter spatial learning/memory and brain mitochondrial function. These findings provide the first evidence regarding impaired spatial learning/memory following repeated administration of α-PVP and the possible role of brain mitochondrial dysfunction in these cognitive impairments.


Asunto(s)
Encefalopatías , Aprendizaje Espacial , Ratas , Animales , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Citocromos c/metabolismo , Aprendizaje por Laberinto , Mitocondrias , Encéfalo , Adenosina Trifosfato/metabolismo , Hipocampo , Estrés Oxidativo
19.
BMC Pharmacol Toxicol ; 24(1): 26, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085872

RESUMEN

BACKGROUND: Medical therapies can cause cardiotoxicity. Chloroquine (QC) and hydroxychloroquine (HQC) are drugs used in the treatment of malaria and skin and rheumatic disorders. These drugs were considered to help treatment of coronavirus disease (COVID-19) in 2019. Despite the low cost and availability of QC and HQC, reports indicate that this class of drugs can cause cardiotoxicity. The mechanism of this event is not well known, but evidence shows that QC and HQC can cause cardiotoxicity by affecting mitochondria and lysosomes. METHODS: Therefore, our study was designed to investigate the effects of QC and HQC on heart mitochondria. In order to achieve this aim, mitochondrial function, reactive oxygen species (ROS) level, mitochondrial membrane disruption, and cytochrome c release in heart mitochondria were evaluated. Statistical significance was determined using the one-way and two-way analysis of variance (ANOVA) followed by post hoc Tukey to evaluate mitochondrial succinate dehydrogenase (SDH) activity and cytochrome c release, and Bonferroni test to evaluate the ROS level, mitochondrial membrane potential (MMP) collapse, and mitochondrial swelling. RESULTS: Based on ANOVA analysis (one-way), the results of mitochondrial SDH activity showed that the IC50 concentration for CQ is 20 µM and for HCQ is 50 µM. Based on two-way ANOVA analysis, the highest effect of CQ and HCQ on the generation of ROS, collapse in the MMP, and mitochondrial swelling were observed at 40 µM and 100 µM concentrations, respectively (p < 0.05). Also, the highest effect of these two drugs has been observed in 60 min (p < 0.05). The statistical results showed that compared to CQ, HCQ is able to cause the release of cytochrome c from mitochondria in all applied concentrations (p < 0.05). CONCLUSIONS: The results suggest that QC and HQC can cause cardiotoxicity which can lead to heart disorders through oxidative stress and disfunction of heart mitochondria.


Asunto(s)
COVID-19 , Hidroxicloroquina , Humanos , Hidroxicloroquina/toxicidad , Cloroquina/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Cardiotoxicidad/etiología , Cardiotoxicidad/tratamiento farmacológico , Citocromos c/metabolismo , Citocromos c/farmacología , Tratamiento Farmacológico de COVID-19 , Mitocondrias
20.
In Vitro Cell Dev Biol Anim ; 59(1): 31-40, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36630058

RESUMEN

Mitochondrial dysfunction is a fundamental mechanism leading to drug nephrotoxicity, such as gentamicin-induced nephrotoxicity. Mitochondrial therapy (mitotherapy) or exogenous mitochondria transplantation is a method that can be used to replace dysfunctional mitochondria with healthy mitochondria. This method can help in the treatment of diseases related to mitochondria. In this research, we studied the transplantation effect of freshly isolated mitochondria on the toxicity induced by gentamicin on renal proximal tubular cells (RPTCs). Furthermore, possible gender-related effects on supplying exogenous rat kidney mitochondria on gentamicin-induced RPTCs were investigated. At first, the normality and proper functioning of fresh mitochondria were assessed by measuring mitochondrial succinate dehydrogenase activity (SDH) and changes in mitochondrial membrane potential (MMP). Then, the protective effects of mitochondrial transplantation against gentamicin-induced mitochondrial toxicity were evaluated through parameters including lactate dehydrogenase (LDH) leakiness, reactive oxygen species (ROS) production, lipid peroxidation (LPO) content, reduced glutathione (GSH) level, extracellular oxidized glutathione (GSSG) level, ATP level, MMP collapse, and caspase-3 activity. According to the statistical analysis, transplanting the healthy mitochondria decreased the cytotoxicity, ROS production, MMP collapse, LPO content, GSSG levels, and caspase-3 activity caused by gentamicin in RPTCs. Also, it has caused an increase in the level of ATP and GSH in the RPTCs. Furthermore, higher preventive effects were observed for the female group. According to the current study, mitochondrial transplantation is a potent therapeutic method in xenobiotic-caused nephrotoxicity.


Asunto(s)
Gentamicinas , Estrés Oxidativo , Ratas , Femenino , Animales , Especies Reactivas de Oxígeno/metabolismo , Gentamicinas/metabolismo , Gentamicinas/farmacología , Disulfuro de Glutatión/metabolismo , Disulfuro de Glutatión/farmacología , Caspasa 3/metabolismo , Riñón/metabolismo , Mitocondrias , Glutatión/metabolismo , Peroxidación de Lípido , Adenosina Trifosfato/metabolismo , Potencial de la Membrana Mitocondrial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA