Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nanoscale Adv ; 6(15): 3699-3713, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39050943

RESUMEN

By virtue of their advanced physicochemical properties, nanoparticles have attracted significant attention from researchers for application in diverse fields of medical science. Breast cancer, presenting a high risk of morbidity and mortality, frequently occurs in women and is considered a malignant tumor. Globally, breast cancer is considered the second leading cause of death. Accordingly, its poor prognosis, invasive metastasis, and relapse have motivated oncologists and nano-medical researchers to develop highly potent nanotherapies to cure this deadly disease. In this case, nanoparticles have emerged as responsive platforms for breast cancer management, providing new approaches to improve the diagnostic accuracy, deliver targeted therapies, and limit the progression of this disease. Recently, smart nano-carriers encapsulating drugs, ligands, and tracking probes have been developed for the specific therapy of breast cancers. Further, efforts have been devoted to developing various nano-systems with minimal toxicity. The aim of this review is to present a background on novel nanotheranostic methods that can be employed to diagnose and treat breast cancers and encourage readers to focus on the development of novel nanomedicine for breast cancers and other deadly diseases. In this context, we discuss different methods for the diagnosis, treatment, and prevention of breast cancers using different metal and metal oxide nanoparticles.

2.
Int J Biol Macromol ; 261(Pt 2): 129848, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302032

RESUMEN

Glycolipid-based biosurfactants (BSs), known for their intriguing and diverse properties, represent a largely uncharted territory in the realm of potential biomedical applications. This field holds great promise yet remains largely unexplored. This investigation provides new insights into the isolation, characterization, and comprehensive biomedical assessment of a novel glycolipid biosurfactant derived from Bacillus species, meeting the growing demand for understanding its multifaceted impact on various biomedical issues. Within this framework, two glycolipids, BG2A and BG2B, emerged as the most proficient strains in biosurfactant (BS) production. The biosurfactants (BSs) ascertained as glycolipids via thin layer chromatography (TLC) exhibited antimicrobial activity against S. aureus and E. coli. Both isolates exhibited anticancer effects against cervical carcinoma cells and demonstrated significant anti-biofilm activity against V. cholerae. Moreover, molecular docking and molecular dynamics (MD) simulations were employed to explore their antimicrobial resistance properties against Tyrosyl-tRNA synthetase (TyrRS) of Staphylococcus aureus, a well-annotated molecular target. Characterization and interpretation using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H and 13C NMR) confirmed that the BSs produced by each strain were glycolipids. These findings suggest that the isolated BSs can serve as effective agents with antibiofilm, antimicrobial, antioxidant, and anticancer properties, in addition to their considerable antibacterial resistance attributes.


Asunto(s)
Antiinfecciosos , Bacillus , Tirosina-ARNt Ligasa , Staphylococcus aureus , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Glucolípidos/farmacología , Glucolípidos/química , Escherichia coli , Tensoactivos/química , Antiinfecciosos/farmacología
3.
Hum Gene Ther ; 35(1-2): 59-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062776

RESUMEN

Despite decades of research in adeno-associated virus (AAV) and the role of adenovirus in production, the interplay of AAV and adenovirus is not fully understood. Specific regions of the adenoviral genome containing E1, E2a, E4 open reading frame (ORF), and VA RNA have been demonstrated as necessary for AAV production; however, incorporating these regions into either a producer cell line or subcloning into an Ad helper plasmid may lead to inclusion of neighboring adenoviral sequence or ORFs with unknown function. Because AAV is frequently used in gene therapies, removing excessive adenovirus sequences improves the Ad helper plasmid size and manufacturability, and may lead to safer vectors for patients. Furthermore, deepening our understanding of the helper virus genes required for recombinant AAV (rAAV) production has the potential to increase yields and manufacturability of rAAV for clinical and commercial applications. One region continuously included in various Ad helper plasmid iterations is the adenoviral E2a promoter region that appears to be necessary for E2a expression. Due to the compact nature of viral genomes, the E2a promoter region overlaps with the Hexon Assembly/100K protein and the L4 region. The L4 region, which contains the coding sequences for 22K and 33K proteins, had not been thought to be necessary for AAV production. Through molecular techniques, this study demonstrates that the adenoviral 22K protein is essential for rAAV production in HEK293 cells by triple transfection and that the 33K protein synergistically increases rAAV yield.


Asunto(s)
Adenoviridae , Dependovirus , Humanos , Dependovirus/genética , Dependovirus/metabolismo , Adenoviridae/genética , Células HEK293 , Plásmidos , Transfección , Proteínas Virales/genética , Vectores Genéticos/genética
4.
Environ Toxicol ; 38(7): 1577-1588, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36988223

RESUMEN

Inside the biological milieu, nanoparticles with photocatalytic activity have potential to trigger cell death non-specifically due to production of reactive oxygen species (ROS) upon reacting with biological entities. Silver nanoparticle (AgNP) possessing narrow band gap energy can exhibit high light absorption property and significant photocatalytic activity. This study intends to explore the effects of ROS generated due to photocatalytic activity of AgNP on antimicrobial and cytotoxic propensities. To this end, AgNP was synthesized using the principle of green chemistry from the peel extract of Punica granatum L., and was characterized using UV-Vis spectroscope, transmission electron microscope and x-ray diffraction, and so forth. The antimicrobial activity of AgNP against studied bacteria indicated that, ROS generated at AgNP interface develop stress on bacterial membrane leading to bacterial cell death, whereas Alamar Blue dye reduction assay indicated that increased cytotoxic activity with increasing concentrations of AgNP. The γH2AX activity assay revealed that increasing the concentrations of AgNP increased DNA damaging activity. The results altogether demonstrated that both antimicrobial and cytotoxic propensities are triggered primarily due interfacial ROS generation by photocatalytic AgNP, which caused membrane deformation in bacteria and DNA damage in HT1080 cells resulting in cell death.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Nanopartículas del Metal , Especies Reactivas de Oxígeno/metabolismo , Plata/toxicidad , Plata/química , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Antiinfecciosos/toxicidad , Estrés Oxidativo , Antineoplásicos/farmacología , Antibacterianos/toxicidad
5.
Am J Respir Crit Care Med ; 207(8): 1042-1054, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36480964

RESUMEN

Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is linked to heterozygous mutations in the FOXF1 (Forkhead Box F1) gene, a key transcriptional regulator of pulmonary vascular development. There are no effective treatments for ACDMPV other than lung transplant, and new pharmacological agents activating FOXF1 signaling are urgently needed. Objectives: Identify-small molecule compounds that stimulate FOXF1 signaling. Methods: We used mass spectrometry, immunoprecipitation, and the in vitro ubiquitination assay to identify TanFe (transcellular activator of nuclear FOXF1 expression), a small-molecule compound from the nitrile group, which stabilizes the FOXF1 protein in the cell. The efficacy of TanFe was tested in mouse models of ACDMPV and acute lung injury and in human vascular organoids derived from induced pluripotent stem cells of a patient with ACDMPV. Measurements and Main Results: We identified HECTD1 as an E3 ubiquitin ligase involved in ubiquitination and degradation of the FOXF1 protein. The TanFe compound disrupted FOXF1-HECTD1 protein-protein interactions and decreased ubiquitination of the FOXF1 protein in pulmonary endothelial cells in vitro. TanFe increased protein concentrations of FOXF1 and its target genes Flk1, Flt1, and Cdh5 in LPS-injured mouse lungs, decreasing endothelial permeability and inhibiting lung inflammation. Treatment of pregnant mice with TanFe increased FOXF1 protein concentrations in lungs of Foxf1+/- embryos, stimulated neonatal lung angiogenesis, and completely prevented the mortality of Foxf1+/- mice after birth. TanFe increased angiogenesis in human vascular organoids derived from induced pluripotent stem cells of a patient with ACDMPV with FOXF1 deletion. Conclusions: TanFe is a novel activator of FOXF1, providing a new therapeutic candidate for treatment of ACDMPV and other neonatal pulmonary vascular diseases.


Asunto(s)
Síndrome de Circulación Fetal Persistente , Recién Nacido , Humanos , Animales , Ratones , Síndrome de Circulación Fetal Persistente/genética , Células Endoteliales , Pulmón/metabolismo , Factores de Transcripción Forkhead/genética
6.
Sci Rep ; 12(1): 8383, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589849

RESUMEN

The green synthesis of silver nanoparticles (AgNPs) and their applications have attracted many researchers as the AgNPs are used effectively in targeting specific tissues and pathogenic microorganisms. The purpose of this study is to synthesize and characterize silver nanoparticles from fully expanded leaves of Eugenia roxburghii DC., as well as to test their effectiveness in inhibiting biofilm production. In this study, at 0.1 mM concentration of silver nitrate (AgNO3), stable AgNPs were synthesized and authenticated by monitoring the color change of the solution from yellow to brown, which was confirmed with spectrophotometric detection of optical density. The crystalline nature of these AgNPs was detected through an X-Ray Diffraction (XRD) pattern. AgNPs were characterized through a high-resolution transmission electron microscope (HR-TEM) to study the morphology and size of the nanoparticles (NPs). A new biological approach was undertaken through the Congo Red Agar (CRA) plate assay by using the synthesized AgNPs against biofilm production. The AgNPs effectively inhibit biofilm formation and the biofilm-producing bacterial colonies. This could be a significant achievement in contending with many dynamic pathogens.


Asunto(s)
Eugenia , Nanopartículas del Metal , Antibacterianos/química , Bacterias , Biopelículas , Tecnología Química Verde , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Plata/farmacología , Difracción de Rayos X
7.
Nat Commun ; 13(1): 2080, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440116

RESUMEN

Pulmonary endothelial progenitor cells (EPCs) are critical for neonatal lung angiogenesis and represent a subset of general capillary cells (gCAPs). Molecular mechanisms through which EPCs stimulate lung angiogenesis are unknown. Herein, we used single-cell RNA sequencing to identify the BMP9/ACVRL1/SMAD1 pathway signature in pulmonary EPCs. BMP9 receptor, ACVRL1, and its downstream target genes were inhibited in EPCs from Foxf1WT/S52F mutant mice, a model of alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Expression of ACVRL1 and its targets were reduced in lungs of ACDMPV subjects. Inhibition of FOXF1 transcription factor reduced BMP9/ACVRL1 signaling and decreased angiogenesis in vitro. FOXF1 synergized with ETS transcription factor FLI1 to activate ACVRL1 promoter. Nanoparticle-mediated silencing of ACVRL1 in newborn mice decreased neonatal lung angiogenesis and alveolarization. Treatment with BMP9 restored lung angiogenesis and alveolarization in ACVRL1-deficient and Foxf1WT/S52F mice. Altogether, EPCs promote neonatal lung angiogenesis and alveolarization through FOXF1-mediated activation of BMP9/ACVRL1 signaling.


Asunto(s)
Células Progenitoras Endoteliales , Síndrome de Circulación Fetal Persistente , Neumonía , Animales , Ratones , Receptores de Activinas Tipo II/metabolismo , Células Progenitoras Endoteliales/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Pulmón/metabolismo , Síndrome de Circulación Fetal Persistente/genética , Síndrome de Circulación Fetal Persistente/metabolismo , Neumonía/metabolismo , Alveolos Pulmonares/anomalías
8.
Circulation ; 144(7): 539-555, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34111939

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a common complication in patients with alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a severe congenital disorder associated with mutations in the FOXF1 gene. Although the loss of alveolar microvasculature causes PH in patients with ACDMPV, it is unknown whether increasing neonatal lung angiogenesis could prevent PH and right ventricular (RV) hypertrophy. METHODS: We used echocardiography, RV catheterization, immunostaining, and biochemical methods to examine lung and heart remodeling and RV output in Foxf1WT/S52F mice carrying the S52F Foxf1 mutation (identified in patients with ACDMPV). The ability of Foxf1WT/S52F mutant embryonic stem cells to differentiate into respiratory cell lineages in vivo was examined using blastocyst complementation. Intravascular delivery of nanoparticles with a nonintegrating Stat3 expression vector was used to improve neonatal pulmonary angiogenesis in Foxf1WT/S52F mice and determine its effects on PH and RV hypertrophy. RESULTS: Foxf1WT/S52F mice developed PH and RV hypertrophy after birth. The severity of PH in Foxf1WT/S52F mice directly correlated with mortality, low body weight, pulmonary artery muscularization, and increased collagen deposition in the lung tissue. Increased fibrotic remodeling was found in human ACDMPV lungs. Mouse embryonic stem cells carrying the S52F Foxf1 mutation were used to produce chimeras through blastocyst complementation and to demonstrate that Foxf1WT/S52F embryonic stem cells have a propensity to differentiate into pulmonary myofibroblasts. Intravascular delivery of nanoparticles carrying Stat3 cDNA protected Foxf1WT/S52F mice from RV hypertrophy and PH, improved survival, and decreased fibrotic lung remodeling. CONCLUSIONS: Nanoparticle therapies increasing neonatal pulmonary angiogenesis may be considered to prevent PH in ACDMPV.


Asunto(s)
Técnicas de Transferencia de Gen , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/terapia , Nanopartículas , Síndrome de Circulación Fetal Persistente/complicaciones , Alveolos Pulmonares/anomalías , Factor de Transcripción STAT3/genética , Remodelación de las Vías Aéreas (Respiratorias)/genética , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Ecocardiografía , Fibrosis , Factores de Transcripción Forkhead/deficiencia , Terapia Genética , Humanos , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/metabolismo , Hipertrofia Ventricular Derecha/diagnóstico , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/metabolismo , Ratones , Ratones Transgénicos , Densidad Microvascular/genética , Miofibroblastos/metabolismo , Síndrome de Circulación Fetal Persistente/genética , Síndrome de Circulación Fetal Persistente/patología , Factor de Transcripción STAT3/administración & dosificación , Nanomedicina Teranóstica/métodos , Resultado del Tratamiento , Remodelación Vascular/genética
9.
Oncogene ; 40(12): 2182-2199, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627785

RESUMEN

The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis. The PAX3-FOXO1 directly binds to FOXF1 enhancers and induces FOXF1 gene expression. CRISPR/Cas9 mediated inactivation of either FOXF1 coding sequence or FOXF1 enhancers suppresses FP-RMS tumorigenesis even in the presence of PAX3-FOXO1 oncogene. Knockdown or genetic knockout of FOXF1 induces myogenic differentiation in PAX3-FOXO1-positive FP-RMS. Over-expression of FOXF1 decreases myogenic differentiation in primary human myoblasts. In FP-RMS tumor cells, FOXF1 protein binds chromatin near enhancers associated with FP-RMS gene signature. FOXF1 cooperates with PAX3-FOXO1 and E-box transcription factors MYOD1 and MYOG to regulate FP-RMS-specific gene expression. Altogether, FOXF1 functions downstream of PAX3-FOXO1 to promote FP-RMS tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Proteína Forkhead Box O1/genética , Factores de Transcripción Forkhead/genética , Factor de Transcripción PAX3/genética , Rabdomiosarcoma/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Desarrollo de Músculos/genética , Proteína MioD/genética , Miogenina/genética , Rabdomiosarcoma/patología
10.
Curr Stem Cell Rep ; 6(3): 41-51, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33184603

RESUMEN

PURPOSE OF THE REVIEW: Significant numbers of patients worldwide are affected by various rare diseases, but the effective treatment options to these individuals are limited. Rare diseases remain underfunded compared to more common diseases, leading to significant delays in research progress and ultimately, to finding an effective cure. Here, we review the use of genome-editing tools to understand the pathogenesis of rare diseases and develop additional therapeutic approaches with a high degree of precision. RECENT FINDINGS: Several genome-editing approaches, including CRISPR/Cas9, TALEN and ZFN, have been used to generate animal models of rare diseases, understand the disease pathogenesis, correct pathogenic mutations in patient-derived somatic cells and iPSCs, and develop new therapies for rare diseases. The CRISPR/Cas9 system stands out as the most extensively used method for genome editing due to its relative simplicity and superior efficiency compared to TALEN and ZFN. CRISPR/Cas9 is emerging as a feasible gene-editing option to treat rare monogenic and other genetically defined human diseases. SUMMARY: Less than 5% of ~7000 known rare diseases have FDA-approved therapies, providing a compelling need for additional research and clinical trials to identify efficient treatment options for patients with rare diseases. Development of efficient genome-editing tools capable to correct or replace dysfunctional genes will lead to novel therapeutic approaches in these diseases.

11.
Mol Biol Cell ; 31(13): 1411-1424, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32348194

RESUMEN

Forkhead box M1 (FOXM1), a nuclear transcription factor that activates cell cycle regulatory genes, is highly expressed in a majority of human cancers. The function of FOXM1 independent of nuclear transcription is unknown. In the present study, we found the FOXM1 protein inside the mitochondria. Using site-directed mutagenesis, we generated FOXM1 mutant proteins that localized to distinct cellular compartments, uncoupling the nuclear and mitochondrial functions of FOXM1. Directing FOXM1 into the mitochondria decreased mitochondrial mass, membrane potential, respiration, and electron transport chain (ETC) activity. In mitochondria, the FOXM1 directly bound to and increased the pentatricopeptide repeat domain 1 (PTCD1) protein, a mitochondrial leucine-specific tRNA binding protein that inhibits leucine-rich ETC complexes. Mitochondrial FOXM1 did not change cellular proliferation. Thus, FOXM1 translocates into mitochondria and inhibits mitochondrial respiration by increasing PTCD1. We identify a new paradigm that FOXM1 regulates mitochondrial homeostasis in a process independent of nuclear transcription.


Asunto(s)
Proteína Forkhead Box M1/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Animales , Simulación por Computador , Proteína Forkhead Box M1/genética , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas Mitocondriales/genética , Mutación , Proteínas de Unión al ARN/genética , Ratas , Xenopus laevis , Pez Cebra
12.
Am J Respir Crit Care Med ; 202(1): 100-111, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32240596

RESUMEN

Rationale: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.Objectives: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.Methods: Newborn mice were exposed to 75% O2 for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with Foxm1 or Foxf1 cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.Measurements and Main Results: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.Conclusions: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.


Asunto(s)
Inductores de la Angiogénesis/administración & dosificación , Sistemas de Liberación de Medicamentos , Proteína Forkhead Box M1/administración & dosificación , Factores de Transcripción Forkhead/administración & dosificación , Hiperoxia/tratamiento farmacológico , Nanopartículas , Alveolos Pulmonares/efectos de los fármacos , Inductores de la Angiogénesis/farmacología , Inductores de la Angiogénesis/uso terapéutico , Animales , Animales Recién Nacidos , Western Blotting , Femenino , Citometría de Flujo , Proteína Forkhead Box M1/farmacología , Proteína Forkhead Box M1/uso terapéutico , Factores de Transcripción Forkhead/farmacología , Factores de Transcripción Forkhead/uso terapéutico , Hiperoxia/patología , Hiperoxia/fisiopatología , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Alveolos Pulmonares/irrigación sanguínea , Alveolos Pulmonares/patología , Alveolos Pulmonares/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Resultado del Tratamiento
13.
Am J Respir Crit Care Med ; 200(8): 1045-1056, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31199666

RESUMEN

Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal congenital disorder causing respiratory failure and pulmonary hypertension shortly after birth. There are no effective treatments for ACDMPV other than lung transplant, and new therapeutic approaches are urgently needed. Although ACDMPV is linked to mutations in the FOXF1 gene, molecular mechanisms through which FOXF1 mutations cause ACDMPV are unknown.Objectives: To identify molecular mechanisms by which S52F FOXF1 mutations cause ACDMPV.Methods: We generated a clinically relevant mouse model of ACDMPV by introducing the S52F FOXF1 mutation into the mouse Foxf1 gene locus using CRISPR/Cas9 technology. Immunohistochemistry, whole-lung imaging, and biochemical methods were used to examine vasculature in Foxf1WT/S52F lungs and identify molecular mechanisms regulated by FOXF1.Measurements and Main Results: FOXF1 mutations were identified in 28 subjects with ACDMPV. Foxf1WT/S52F knock-in mice recapitulated histopathologic findings in ACDMPV infants. The S52F FOXF1 mutation disrupted STAT3-FOXF1 protein-protein interactions and inhibited transcription of Stat3, a critical transcriptional regulator of angiogenesis. STAT3 signaling and endothelial proliferation were reduced in Foxf1WT/S52F mice and human ACDMPV lungs. S52F FOXF1 mutant protein did not bind chromatin and was transcriptionally inactive. Furthermore, we have developed a novel formulation of highly efficient nanoparticles and demonstrated that nanoparticle delivery of STAT3 cDNA into the neonatal circulation restored endothelial proliferation and stimulated lung angiogenesis in Foxf1WT/S52F mice.Conclusions: FOXF1 acts through STAT3 to stimulate neonatal lung angiogenesis. Nanoparticle delivery of STAT3 is a promising strategy to treat ACDMPV associated with decreased STAT3 signaling.


Asunto(s)
Factores de Transcripción Forkhead/genética , Regulación de la Expresión Génica , Mutación , Síndrome de Circulación Fetal Persistente/genética , Síndrome de Circulación Fetal Persistente/fisiopatología , Alveolos Pulmonares/anomalías , Transducción de Señal/genética , Animales , Humanos , Ratones , Modelos Animales , Alveolos Pulmonares/fisiopatología
14.
Mol Cancer Ther ; 18(7): 1217-1229, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31040162

RESUMEN

The oncogenic transcription factor FOXM1 has been previously shown to play a critical role in carcinogenesis by inducing cellular proliferation in multiple cancer types. A small-molecule compound, Robert Costa Memorial drug-1 (RCM-1), has been recently identified from high-throughput screen as an inhibitor of FOXM1 in vitro and in mouse model of allergen-mediated lung inflammation. In the present study, we examined antitumor activities of RCM-1 using tumor models. Treatment with RCM-1 inhibited tumor cell proliferation as evidenced by increased cell-cycle duration. Confocal imaging of RCM-1-treated tumor cells indicated that delay in cellular proliferation was concordant with inhibition of FOXM1 nuclear localization in these cells. RCM-1 reduced the formation and growth of tumor cell colonies in the colony formation assay. In animal models, RCM-1 treatment inhibited growth of mouse rhabdomyosarcoma Rd76-9, melanoma B16-F10, and human H2122 lung adenocarcinoma. RCM-1 decreased FOXM1 protein in the tumors, reduced tumor cell proliferation, and increased tumor cell apoptosis. RCM-1 decreased protein levels and nuclear localization of ß-catenin, and inhibited protein-protein interaction between ß-catenin and FOXM1 in cultured tumor cells and in vivo Altogether, our study provides important evidence of antitumor potential of the small-molecule compound RCM-1, suggesting that RCM-1 can be a promising candidate for anticancer therapy.


Asunto(s)
Proteína Forkhead Box M1/genética , beta Catenina/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones , Transfección , beta Catenina/genética
15.
3 Biotech ; 8(6): 261, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29780683

RESUMEN

Bacillus tequilensis strain CH had been previously shown to produce a biosurfactant. In this study, chemical structure of the purified biosurfactant was determined by using high performance liquid chromatography and liquid chromatography-mass spectroscopy as a 10 amino acid cyclic lipopeptide (CL). The cyclic lipopeptide was found to be active against Anopheles culicifacies larvae with a LC50 of 110 µg/ml in 2 days. 1 ppm cadmium (Cd) which had a profound mutagenic effect on the cell division of onion (Allium cepa) root tip cell resulting in abnormal metaphase, abnormal anaphase and nuclei elongation was partially reversed in the presence of 0.1 mg/ml of CL (52% cells dividing normally and 8% with abnormal division) and was comparable to control experiment where no Cd was present. Thus, the CL described in this report may have applications in eliminating larvae from water repository systems and in reversing the effects of cadmium pollution.

16.
Mater Sci Eng C Mater Biol Appl ; 80: 149-155, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28866150

RESUMEN

The important objective of this study is to evaluate the effect of chicken eggshell (nano-Cao) as a functionalized bio-filler on the mechanical strength and thermal stability of acrylic based bionanocomposite of chitosan grafted with poly(methyl methacrylate)(PMMA). The chitosan grafted PMMA adsorbed with functionalized biofiller was prepared via emulsion polymerisation technique and physicochemically characterized as bone graft substitute. The so prepared grafted bioactive bone cement (BBC) bionanocomposite (BNC), chitosan-g-PMMA/nano-CaO was characterized by FTIR, XRD, FESEM and TGA. The water uptake, retention ability, their biodegradability and the nanosize particle arrangement in the polymeric BBC-BNCs were undertaken. These preliminary investigations of the BNCs will open the door for their use in bioadhesive bone cement implants in future.


Asunto(s)
Cáscara de Huevo , Animales , Cementos para Huesos , Pollos , Quitosano , Gentamicinas , Ensayo de Materiales , Metilmetacrilatos , Polimetil Metacrilato
17.
Sci Signal ; 10(475)2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28420758

RESUMEN

Goblet cell metaplasia and excessive mucus secretion associated with asthma, cystic fibrosis, and chronic obstructive pulmonary disease contribute to morbidity and mortality worldwide. We performed a high-throughput screen to identify small molecules targeting a transcriptional network critical for the differentiation of goblet cells in response to allergens. We identified RCM-1, a nontoxic small molecule that inhibited goblet cell metaplasia and excessive mucus production in mice after exposure to allergens. RCM-1 blocked the nuclear localization and increased the proteasomal degradation of Forkhead box M1 (FOXM1), a transcription factor critical for the differentiation of goblet cells from airway progenitor cells. RCM-1 reduced airway resistance, increased lung compliance, and decreased proinflammatory cytokine production in mice exposed to the house dust mite and interleukin-13 (IL-13), which triggers goblet cell metaplasia. In cultured airway epithelial cells and in mice, RCM-1 reduced IL-13 and STAT6 (signal transducer and activator of transcription 6) signaling and prevented the expression of the STAT6 target genes Spdef and Foxa3, which are key transcriptional regulators of goblet cell differentiation. These results suggest that RCM-1 is an inhibitor of goblet cell metaplasia and IL-13 signaling, providing a new therapeutic candidate to treat patients with asthma and other chronic airway diseases.


Asunto(s)
Alérgenos/toxicidad , Proteína Forkhead Box M1/antagonistas & inhibidores , Células Caliciformes/inmunología , Interleucina-13/inmunología , Factor de Transcripción STAT6/inmunología , Animales , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/inmunología , Células Caliciformes/patología , Factor Nuclear 3-gamma del Hepatocito/genética , Factor Nuclear 3-gamma del Hepatocito/inmunología , Interleucina-13/genética , Metaplasia/inducido químicamente , Metaplasia/genética , Metaplasia/inmunología , Metaplasia/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/inmunología , Factor de Transcripción STAT6/genética
18.
Oncogene ; 36(6): 850-862, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-27425595

RESUMEN

The role of Forkhead Box F1 (FoxF1) transcription factor in carcinogenesis is not well characterized. Depending on tissue and histological type of cancer, FoxF1 has been shown to be either an oncogene or a tumor suppressor. Alveolar rhabdomyosarcoma (RMS) is the most aggressive pediatric soft-tissue sarcoma. Although FoxF1 is highly expressed in alveolar RMS, the functional role of FoxF1 in RMS is unknown. The present study demonstrates that expression of FoxF1 and its closely related transcription factor FoxF2 are essential for RMS tumor growth. Depletion of FoxF1 or FoxF2 in RMS cells decreased tumor growth in orthotopic mouse models of RMS. The decreased tumorigenesis was associated with reduced tumor cell proliferation. Cell cycle regulatory proteins Cdk2, Cdk4/6, Cyclin D1 and Cyclin E2 were decreased in FoxF1- and FoxF2-deficient RMS tumors. Depletion of either FoxF1 or FoxF2 delayed G1-S cell cycle progression, decreased levels of phosphorylated retinoblastoma protein (Rb) and increased protein levels of the CDK inhibitors, p21Cip1 and p27Kip1. Depletion of both FoxF1 and FoxF2 in tumor cells completely abrogated RMS tumor growth in mice. Overexpression of either FoxF1 or FoxF2 in tumor cells was sufficient to increase tumor growth in orthotopic RMS mouse model. FoxF1 and FoxF2 directly bound to and repressed transcriptional activity of p21Cip1 promoter through -556/-545 bp region, but did not affect p27Kip1 transcription. Knockdown of p21Cip1 restored cell cycle progression in the FoxF1- or FoxF2-deficient tumor cells. Altogether, FoxF1 and FoxF2 promoted RMS tumorigenesis by inducing tumor cell proliferation via transcriptional repression of p21Cip1 gene promoter. Because of the robust oncogenic activity in RMS tumors, FoxF1 and FoxF2 may represent promising targets for anti-tumor therapy.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteína de Retinoblastoma/metabolismo , Rabdomiosarcoma/genética , Animales , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Factores de Transcripción Forkhead/genética , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Proteína de Retinoblastoma/genética , Rabdomiosarcoma/patología , Transfección
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 163: 127-33, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27045785

RESUMEN

Herein, we report an eco-friendly, mild and one-pot approach for synthesis of silver nanoparticles via a lipopeptide biosurfactant - CHBS. The biosurfactant forms liposome vesicles when dispersed in an aqueous medium. The amino acid groups of the biosurfactant assists in the reduction of Ag(+) ions leading to the production of homogeneous silver nanoparticles, encapsulated within the liposome vesicle, as confirmed from TEM analysis. Rate of synthesis and size of particle were greatly dependent on pH and reaction temperature. Kinetic analysis suggests the involvement of an autocatalytic reaction and the observed rate constant (kobs) was found to decrease with temperature, suggesting faster reaction with increasing temperature. Furthermore, the silver nanoparticles served as excellent probes for highly selective and sensitive recognition of Hg(2+) ions. Interaction with Hg(2+) ions results in an immediate change in colour of nanoparticle solution form brownish red to milky white. With increasing Hg(2+) ions concentration, a gradual disappearance of SPR peak was observed. A linear relationship (A420/660) with an R(2) value of 0.97 was observed in the range of 20 to 100ppm Hg(2+) concentration. Hg(2+) ions are reduced to their elemental forms which thereby interact with the vesicles, leading to aggregation and precipitation of particles. The detection method avoids the need of functionalizing ligands and favours Hg(2+) detection in aqueous samples by visible range spectrophotometry and hence can be used for simple and rapid analysis.


Asunto(s)
Liposomas/química , Mercurio/análisis , Nanopartículas del Metal/química , Nanotecnología/métodos , Plata/química , Concentración de Iones de Hidrógeno , Iones , Cinética , Límite de Detección , Lipopéptidos/química , Nanopartículas del Metal/ultraestructura , Espectrometría por Rayos X , Espectrofotometría Ultravioleta , Coloración y Etiquetado , Tensoactivos/química , Temperatura
20.
Oncotarget ; 7(2): 1912-26, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26625197

RESUMEN

Forkhead box F1 (Foxf1) transcription factor is an important regulator of embryonic development but its role in tumor cells remains incompletely understood. While 16 proteins were characterized in Fanconi anemia (FA) core complex, its interactions with cellular transcriptional machinery remain poorly characterized. Here, we identified FoxF1 protein as a novel interacting partner of the FA complex proteins. Using multiple human and mouse tumor cell lines and Foxf1+/- mice we demonstrated that FoxF1 physically binds to and increases stability of FA proteins. FoxF1 co-localizes with FANCD2 in DNA repair foci in cultured cells and tumor tissues obtained from cisplatin-treated mice. In response to DNA damage, FoxF1-deficient tumor cells showed significantly reduced FANCD2 monoubiquitination and FANCM phosphorylation, resulting in impaired formation of DNA repair foci. FoxF1 knockdown caused chromosomal instability, nuclear abnormalities, and increased tumor cell death in response to DNA-damaging agents. Overexpression of FoxF1 in DNA-damaged cells improved stability of FA proteins, decreased chromosomal and nuclear aberrations, restored formation of DNA repair foci and prevented cell death after DNA damage. These findings demonstrate that FoxF1 is a key component of FA complexes and a critical mediator of DNA damage response in tumor cells.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Rabdomiosarcoma/tratamiento farmacológico , Animales , Apoptosis , Western Blotting , Proliferación Celular , Cromatina/genética , Reparación del ADN/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Técnica del Anticuerpo Fluorescente , Factores de Transcripción Forkhead/genética , Inestabilidad Genómica , Humanos , Inmunoprecipitación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rabdomiosarcoma/enzimología , Rabdomiosarcoma/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA