Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Carbohydr Polym ; 339: 122266, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823930

RESUMEN

Konjac glucomannan (KG) is a dietary fiber hydrocolloid derived from Amorphophallus konjac tubers and is widely utilized as a food additive and dietary supplement. As a health-conscious choice, purified KG, along with konjac flour and KG-infused diets, have gained widespread acceptance in Asian and European markets. An overview of the chemical composition and structure of KG is given in this review, along with thorough explanations of the processes used in its extraction, production, and purification. KG has been shown to promote health by reducing glucose, cholesterol, triglyceride levels, and blood pressure, thereby offering significant weight loss advantages. Furthermore, this review delves into the extensive health benefits and pharmaceutical applications of KG and its derivatives, emphasizing its prebiotic, anti-inflammatory, and antitumor activities. This study highlights how these natural polysaccharides can positively influence health, underscoring their potential in various biomedical applications.


Asunto(s)
Amorphophallus , Mananos , Mananos/química , Mananos/aislamiento & purificación , Humanos , Amorphophallus/química , Animales , Fibras de la Dieta/análisis , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Suplementos Dietéticos , Prebióticos , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología
2.
Future Sci OA ; 10(1): FSO922, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841181

RESUMEN

Aim: Photobiomodulation involves the use of low-level light therapy or near-infrared light therapy found to be useful in the treatment of a wide range of neurological diseases. Objective: The aim is to review the mechanism and clinical applications of photobiomodulation therapy (PBMT) in managing Alzheimer's disease. Methods: To ensure that the consensus statement accurately reflects both the experts' viewpoint and the most recent developments in the field, the expert opinions were recorded and thoroughly reviewed. Results: PBMT elicits reduction of beta-amyloid plaque, restoration of mitochondrial function, anti-inflammatory and antioxidant properties with a stimulation in ATP synthesis. Conclusion: The PBMT could be helpful in patients non-responsive to traditional pharmacological therapy providing significant aid in the management of Alzheimer's disease when introduced into the medical field.


Alzheimer's disease (AD) is an incurable progressive neurodegenerative disease clinically manifested with a decline in cognitive function. To ensure that the consensus statement accurately reflects both the experts' viewpoint and the most recent developments in the field, the expert opinions were recorded and thoroughly reviewed. PBMT elicits various mechanisms such as reduction of beta-amyloid plaque, Restoration of mitochondrial function and maintenance the homeostasis, and anti-inflammatory and antioxidant properties with a stimulation in ATP synthesis. The PBMT could be helpful in patients who are non-responsive to conventional pharmacological therapy. This therapy might provide significant aid in the management of AD when introduced into the medical field. However, it requires various intensive research to be conducted for further conclusion.

3.
Curr Med Chem ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38847381

RESUMEN

Cancer, a complicated and multi-dimensional medical concern worldwide, can be identified via either the growth of malignant tumours or colonisation of nearby tissues attributing to uncontrollable proliferation and division of cells promoted by several influential factors, including family history, exposure to pollutants, choice of lifestyle, and certain infections. The intricate processes underlying the development, expansion, and advancement of cancer are still being studied. However, there are a variety of therapeutic alternatives available for the diagnosis and treatment of cancer depending on the type and stage of cancer as well as the patient's individuality. The bioactive compoundsfortified nanofiber-based advanced therapies are revolutionary models for cancer detection and treatment, specifically targeting melanoma cells via exploring unique properties, such as increased surface area for payload, and imaging and bio-sensing capacities of nano-structured materials with minimal damage to functioning organs. The objective of the study was to gain knowledge regarding the potentiality of Nanofibers (NFs) fabricated using biomaterials in promoting cancer management along with providing a thorough overview of recent developmental initiatives, challenges, and future investigation strategies. Several fabrication approaches, such as electrospinning, self-assembly, phase separation, drawing, and centrifugal spinning of bio-compatible NFs along with characterization techniques, have been elaborated in the review.

4.
Curr Med Chem ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38910490

RESUMEN

Anthocyanins (ANCs) are obtained from pigmented foods like blueberry, strawberry, and red cabbage and are phenolic compounds belonging to the flavonoids family. ANCs have garnered significant attention in recent years due to their diverse biological activities and potential health benefits. This comprehensive review presents a holistic exploration of anthocyanins, spanning from their chemical structure and biosynthesis pathways to the myriad analytical techniques employed for their identification and quantification. Furthermore, the rich tapestry of plant sources yields anthocyanins is delved into, highlighting their incorporation into various pharmaceutical formulations. This review aims to provide a comprehensive synthesis of current knowledge on anthocyanins, spanning from their origins in nature to their multifaceted pharmacological activities and innovative pharmaceutical applications.

.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38935128

RESUMEN

Biogenic metallic nanoparticles (NPs) have garnered significant attention in recent years due to their unique properties and various applications in different fields. NPs, including gold, silver, zinc oxide, copper, titanium, and magnesium oxide NPs, have attracted considerable interest. Green synthesis approaches, utilizing natural products, offer advantages such as sustainability and environmental friendliness. The theranostics applications of these NPs hold immense significance in the fields of medicine and diagnostics. The review explores intricate cellular uptake pathways, internalization dynamics, reactive oxygen species generation, and ensuing inflammatory responses, shedding light on the intricate mechanisms governing their behaviour at a molecular level. Intriguingly, biogenic metallic NPs exhibit a wide array of applications in medicine, including but not limited to anti-inflammatory, anticancer, anti-diabetic, anti-plasmodial, antiviral properties and radical scavenging efficacy. Their potential in personalized medicine stands out, with a focus on tailoring treatments to individual patients based on these NPs' unique attributes and targeted delivery capabilities. The article culminates in emphasizing the role of biogenic metallic NPs in shaping the landscape of personalized medicine. Harnessing their unique properties for tailored therapeutics, diagnostics and targeted interventions, these NPs pave the way for a paradigm shift in healthcare, promising enhanced efficacy and reduced adverse effects.

6.
Z Naturforsch C J Biosci ; 79(5-6): 107-124, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38721838

RESUMEN

Chitosan (CT), a natural, cationic, chemically stable molecule, biocompatible, biodegradable, nontoxic, polysaccharide derived from the deacetylation of chitin, has very uniquely surfaced as a material of promise for drug delivery and biomedical applications. For the oral, ocular, cutaneous, pulmonary, and nose-to-brain routes, CT-coated nanoparticles (CTCNPs) have numerous advantages, consisting of improved controlled drug release, physicochemical stability, improved cell and tissue interactions, and increased bioavailability and efficacy of the active ingredient. CTCNPs have a broad range of therapeutic properties including anticancer, antiviral, antifungal, anti-inflammatory, antibacterial properties, treating neurological disorders, and other diseases. This has led to substantial research into the many potential uses of CT as a drug delivery vehicle. CT has also been employed in a wide range of biomedical processes, including bone and cartilage tissue regeneration, ocular tissue regeneration, periodontal tissue regeneration, heart tissue regeneration, and wound healing. Additionally, CT has been used in cosmeceutical, bioimaging, immunization, and gene transfer applications. CT exhibits a number of biological activities, which are the basis for its remarkable potential for use as a drug delivery vehicle, and these activities are covered in detail in this article. The alterations applied to CT to obtain the necessary properties have been described.


Asunto(s)
Quitosano , Enfermedad Crítica , Sistemas de Liberación de Medicamentos , Nanopartículas , Quitosano/química , Humanos , Nanopartículas/química , Animales , Portadores de Fármacos/química , Liposomas
7.
Med Oncol ; 41(6): 145, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727885

RESUMEN

Polyelectrolytes represent a unique class of polymers abundant in ionizable functional groups. In a solution, ionized polyelectrolytes can intricately bond with oppositely charged counterparts, giving rise to a fascinating phenomenon known as a polyelectrolyte complex. These complexes arise from the interaction between oppositely charged entities, such as polymers, drugs, and combinations thereof. The polyelectrolyte complexes are highly appealing in cancer management, play an indispensable role in chemotherapy, crafting biodegradable, biocompatible 3D membranes, microcapsules, and nano-sized formulations. These versatile complexes are pivotal in designing controlled and targeted release drug delivery systems. The present review emphasizes on classification of polyelectrolyte complex along with their formation mechanisms. This review comprehensively explores the applications of polyelectrolyte complex, highlighting their efficacy in targeted drug delivery strategies for combating different forms of cancer. The innovative use of polyelectrolyte complex presents a potential breakthrough in cancer therapeutics, demonstrating their role in enhancing treatment precision and effectiveness.


Asunto(s)
Antineoplásicos , Sistemas de Liberación de Medicamentos , Neoplasias , Polielectrolitos , Humanos , Polielectrolitos/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Medicina de Precisión/métodos
8.
J Biomed Mater Res A ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721841

RESUMEN

The worldwide health burden of colorectal cancer is still substantial, and traditional chemotherapeutic drugs sometimes have poor selectivity, which can result in systemic toxicity and unfavorable side effects. For colon-specific medication delivery, bioengineered carbohydrate polymers have shown promise as carriers. They may enhance treatment effectiveness while minimizing systemic exposure and associated side effects. The unique properties of these manufactured or naturally occurring biopolymers, such as hyaluronic acid, chitosan, alginate, and pectin, enable targeted medicine release. These qualities can be changed to meet the physiological needs of the colon. In the context of colorectal cancer therapy, this article provides a comprehensive overview of current developments and prospective future directions in the field of bioengineered carbohydrate polymer synthesis for colon-specific drug delivery. We discuss numerous techniques for achieving colon-targeted drug release, including enzyme-sensitive polymers, pH-responsive devices, and microbiota-activated processes. To increase tumor selectivity and cellular uptake, we also examine the inclusion of active targeting approaches, such as conjugating specific ligands. Furthermore, we discuss the potential of combination treatment strategies, which use the coadministration of numerous therapeutic medications to target multiple pathways implicated in cancer growth and address drug resistance mechanisms. We address recent biomimetic advances that potentially improve the biocompatibility, cellular uptake, and tumor penetration of carbohydrate polymer-based nanocarriers. These methods involve protein corona engineering and cell membrane coating. Furthermore, we look at the possibility of intelligent and sensitive systems that may adjust their behaviors in response to certain inputs or feedback loops, allowing for precise and regulated drug distribution.

9.
EXCLI J ; 23: 534-569, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741726

RESUMEN

Novel treatments are needed as neurological issues become more frequent worldwide. According to the report, plants, oceans, microorganisms, and animals contain interesting drug discovery compounds. Alzheimer's, Parkinson's, and stroke reviews emphasize neurological disorders' complexity and natural substances' safety. Learn about marine-derived and herbal substances' neuroprotective characteristics and applications. Molecular pathways show these substances' neurological healing effects. This article discusses clinical usage of Bryostatin-1, Fucoidan, Icariin, Salvianolic acid, Curcumin, Resveratrol, etc. Their potential benefits for asthma and Alzheimer's disease are complex. Although limited, the study promotes rigorous scientific research and collaboration between traditional and alternative medical practitioners. Unexplored natural compounds, quality control, well-structured clinical trials, and interdisciplinary collaboration should guide future study. Developing and employing natural chemicals to treat neurological illnesses requires ethical sourcing, sustainability, and public awareness. This detailed analysis covers natural chemicals' current state, challenges, and opportunities in neurological disorder treatment. See also the graphical abstract(Fig. 1).

10.
ACS Pharmacol Transl Sci ; 7(4): 967-990, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38633600

RESUMEN

Precision medicine is transforming colorectal cancer treatment through the integration of advanced technologies and biomarkers, enhancing personalized and effective disease management. Identification of key driver mutations and molecular profiling have deepened our comprehension of the genetic alterations in colorectal cancer, facilitating targeted therapy and immunotherapy selection. Biomarkers such as microsatellite instability (MSI) and DNA mismatch repair deficiency (dMMR) guide treatment decisions, opening avenues for immunotherapy. Emerging technologies such as liquid biopsies, artificial intelligence, and machine learning promise to revolutionize early detection, monitoring, and treatment selection in precision medicine. Despite these advancements, ethical and regulatory challenges, including equitable access and data privacy, emphasize the importance of responsible implementation. The dynamic nature of colorectal cancer, with its tumor heterogeneity and clonal evolution, underscores the necessity for adaptive and personalized treatment strategies. The future of precision medicine in colorectal cancer lies in its potential to enhance patient care, clinical outcomes, and our understanding of this intricate disease, marked by ongoing evolution in the field. The current reviews focus on providing in-depth knowledge on the various and diverse approaches utilized for precision medicine against colorectal cancer, at both molecular and biochemical levels.

11.
Curr Med Chem ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685773

RESUMEN

The review explores the enhancement of therapeutic efficacy through the innovative use of polymeric molecular envelope technology (MET). It delves into the diverse methods employed to achieve superior therapeutic outcomes, shedding light on strategies for improving drug delivery and bioavailability. MET is a promising approach to improve the solubility and bioavailability of poorly water-soluble drugs. This technology involves the use of a molecular envelope of cyclic oligosaccharides called cyclodextrins, which is a supramolecular assembly of amphiphilic molecules that encapsulate and solubilize hydrophobic drug molecules. This can further improve the solubility of the drug by increasing its surface area and reducing its crystallinity. Moreover, MET also protects the drug from degradation and enhances its permeability across biological membranes. Furthermore, the review thoroughly examines the MET, including its methods of preparation, applications in drug encapsulation, and the evaluation of its potential to optimize therapeutic outcomes. By adopting current research and key findings, this review provides valuable insights into the transformative potential of polymeric molecular envelope technology for advancing the field of therapeutics.

12.
ACS Omega ; 9(12): 13534-13555, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559954

RESUMEN

Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 µm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38646682

RESUMEN

Central nervous system disorders are prevalent, profoundly debilitating, and poorly managed. Developing innovative treatments for these conditions, including Alzheimer's disease, could significantly improve patients' quality of life and reduce the future economic burden on healthcare systems. However, groundbreaking drugs for central nervous system disorders have been scarce in recent years, highlighting the pressing need for advancements in this field. One significant challenge in the realm of nanotherapeutics is ensuring the precise delivery of drugs to their intended targets due to the complex nature of Alzheimer's disease. Although numerous therapeutic approaches for Alzheimer's have been explored, most drug candidates targeting amyloid-ß have failed in clinical trials. Recent research has revealed that tau pathology can occur independently of amyloid-ß and is closely correlated with the clinical progression of Alzheimer's symptoms. This discovery suggests that tau could be a promising therapeutic target. One viable approach to managing central nervous system disorders is the administration of nanoparticles to neurons, intending to inhibit tau aggregation by directly targeting p-tau. In Alzheimer's disease, beta-amyloid plaques and neurofibrillary tau tangles hinder neuron transmission and function. The disease also triggers persistent inflammation, compromises the blood-brain barrier, leads to brain shrinkage, and causes neuronal loss. While current medications primarily manage symptoms and slow cognitive decline, there is no cure for Alzheimer's.

14.
Pharm Nanotechnol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38465435

RESUMEN

Due to the complexities of the eye's anatomy and physiology, achieving targeted drug delivery with minimal harm to healthy eye tissues has proven to be difficult. The focus of the review is on the potential of lipid and polymer micelle-based drug delivery systems, specifically nanomicelles, to overcome these challenges and improve the absorption of insoluble drugs. Nanomicelles offer several advantages, such as enhanced drug release kinetics, increased drug incorporation, and improved formulation of hydrophobic medicines. The review provides insights into various excipients, preparation methods, and evaluation techniques used in nanomicellar-based drug delivery systems. Furthermore, the review highlights current research and patents related to nanomicelles in ocular drug delivery, suggesting growing interest and potential for future developments in this field. Nanomicelles present a promising approach that may revolutionize ocular drug delivery and open new possibilities for treating various ocular diseases while minimizing adverse effects on healthy eye tissues.

15.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543115

RESUMEN

In recent years, due to their distinctive and adaptable therapeutic effects, many natural bioactive compounds have been commonly used to treat diseases. Their limited solubility, low bioavailability, inadequate gastrointestinal tract stability, high metabolic rate, and shorter duration of action limited their pharmaceutical applications. However, those can be improved using nanotechnology to create various drug delivery systems, including lipid-based nanoparticles, to adjust the compounds' physicochemical properties and pharmacokinetic profile. Because of the enormous technical advancements made in the fundamental sciences and the physical and chemical manipulation of individual atoms and molecules, the subject of nanotechnology has experienced revolutionary growth. By fabricating certain functionalized particles, nanotechnology opens an innovative horizon in research and development for overcoming restrictions, including traditional medication administration systems. Nanotechnology-driven bioactive compounds are certain to have a high impact and clinical value for current and future uses. Lipid-based nanotechnologies were shown to deliver a range of naturally occurring bioactive compounds with decent entrapment potential and stability, a successfully controlled release, increased bioavailability, and intriguing therapeutic activity. This review outlines bioactive compounds such as paclitaxel, curcumin, rhodomyrtone, quercetin, kaempferol, resveratrol, epigallocatechin-3-gallate, silymarin, and oridonin, fortified within either a natural or synthetic lipid-based drug delivery system based on nanotechnology and their evaluation and clinical considerations.

16.
Pharmaceutics ; 16(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543191

RESUMEN

Prostate cancer is one of the most life-threatening disorders that occur in males. It has now become the third most common disease all over the world, and emerging cases and spiking mortality rates are becoming more challenging day by day. Several approaches have been used to treat prostate cancer, including surgery, radiation therapy, chemotherapy, etc. These are painful and invasive ways of treatment. Primarily, chemotherapy has been associated with numerous drawbacks restricting its further application. The majority of prostate cancers have the potential to become castration-resistant. Prostate cancer cells exhibit resistance to chemotherapy, resistance to radiation, ADT (androgen-deprivation therapy) resistance, and immune stiffness as a result of activating tumor-promoting signaling pathways and developing resistance to various treatment modalities. Nanomedicines such as liposomes, nanoparticles, branched dendrimers, carbon nanotubes, and quantum dots are promising disease management techniques in this context. Nanomedicines can target the drugs to the target site and enhance the drug's action for a prolonged period. They may also increase the solubility and bioavailability of poorly soluble drugs. This review summarizes the current data on nanomedicines for the prevention and treatment of prostate cancer. Thus, nanomedicine is pioneering in disease management.

17.
Front Pharmacol ; 15: 1348297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444940

RESUMEN

Various microbial communities reside in the gastrointestinal tract of humans and play an important role in immunity, digestion, drug metabolism, intestinal integrity, and protection from pathogens. Recent studies have revealed that the gut microbiota (GM) is involved in communication with the brain, through a bidirectional communication network known as the gut-brain axis. This communication involves humoral, immunological, endocrine, and neural pathways. Gut dysbiosis negatively impacts these communication pathways, leading to neurological complications and cognitive deficits. Both pre-clinical and clinical studies have demonstrated that probiotics can restore healthy GM, reduce intestinal pH, and reduce inflammation and pathogenic microbes in the gut. Additionally, probiotics improve cell-to-cell signaling and increase blood-brain-derived neurotrophic factors. Probiotics emerge as a potential approach for preventing and managing neurological complications and cognitive deficits. Despite these promising findings, the safety concerns and possible risks of probiotic usage must be closely monitored and addressed. This review article provides a brief overview of the role and significance of probiotics in cognitive health.

18.
Saudi Pharm J ; 32(4): 102002, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38439951

RESUMEN

Pectin hydrogels have emerged as a highly promising medium for the controlled release of pharmaceuticals in the dynamic field of drug delivery. The present review sheds light on the broad range of applications and potential of pectin-based hydrogels in pharmaceutical formulations. Pectin, as a biopolymer, is a versatile candidate for various drug delivery systems because of its wide range of properties and characteristics. The information provided on formulation strategies and crosslinking techniques provides researchers with tools to improve drug entrapment and controlled release. Furthermore, this review provides a more in-depth understanding of the complex factors influencing drug release from pectin hydrogels, such as the impact of environmental conditions and drug-specific characteristics. Pectin hydrogels demonstrate adaptability across diverse domains, ranging from applications in oral and transdermal drug delivery to contributions in wound healing, tissue engineering, and ongoing clinical trials. While standardization and regulatory compliance remain significant challenges, the future of pectin hydrogels appears to be bright, opening up new possibilities for advanced drug delivery systems.

19.
Curr Top Med Chem ; 24(6): 503-522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38321910

RESUMEN

Since their discovery in valsartan-containing drugs, nitrosamine impurities have emerged as a significant safety problem in pharmaceutical products, prompting extensive recalls and suspensions. Valsartan, candesartan, irbesartan, olmesartan, and other sartans have been discovered to have additional nitrosamine impurities, such as N-nitroso-N-methyl-4-aminobutyric acid (NMBA), N-nitroso-Di-isopropyl amine (NDIPA), N-nitroso-Ethyl-Isopropyl amine (NEIPA), and N-nitroso-Diethyl amine (NDEA). Concerns about drug safety have grown in response to reports of nitrosamine contamination in pharmaceuticals, such as pioglitazone, rifampin, rifapentine, and varenicline. This review investigates the occurrence and impact of nitrosamine impurities in sartans and pharmaceutical goods, as well as their underlying causes. The discussion emphasizes the significance of comprehensive risk assessment and mitigation approaches at various phases of medication development and manufacturing. The link between amines and nitrosamine impurities is also investigated, with an emphasis on pH levels and the behaviour of primary, secondary, tertiary, and quaternary amines. Regulations defining standards for nitrosamine assessment and management, such as ICH Q3A-Q3E and ICH M7, are critical in resolving impurity issues. Furthermore, the Global Substance Registration System (GSRS) is underlined as being critical for information sharing and product safety in the pharmaceutical industry. The review specifically focuses on the relationship between ranitidine and N-nitroso dimethyl amine (NDMA) in the context of the implications of nitrosamine contamination on patient safety and medicine supply. The importance of regulatory authorities in discovering and correcting nitrosamine impurities is highlighted in order to improve patient safety, product quality, and life expectancy. Furthermore, the significance of ongoing study and attention to nitrosamine-related repercussions for increasing pharmaceutical safety and overall public health is emphasized.


Asunto(s)
Contaminación de Medicamentos , Nitrosaminas , Nitrosaminas/análisis , Nitrosaminas/química , Humanos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/análisis
20.
Artículo en Inglés | MEDLINE | ID: mdl-38357950

RESUMEN

Ovarian cancer poses a formidable health challenge for women globally, necessitating innovative therapeutic approaches. This review provides a succinct summary of the current research status on lipid-based nanocarriers in the context of ovarian cancer treatment. Lipid-based nanocarriers, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs), offer a promising solution for delivering anticancer drugs with enhanced therapeutic effectiveness and reduced adverse effects. Their versatility in transporting both hydrophobic and hydrophilic medications makes them well-suited for a diverse range of anticancer drugs. Active targeting techniques like ligand-conjugation and surface modifications have been used to reduce off-target effects and achieve tumour-specific medication delivery. The study explores formulation techniques and adjustments meant to enhance drug stability and encapsulation in these nanocarriers. Encouraging results from clinical trials and preclinical investigations underscore the promise of lipid-based nanocarriers in ovarian cancer treatment, providing optimism for improved patient outcomes. Notwithstanding these advancements, challenges related to clearance, long-term stability, and scalable manufacturing persist. Successfully translating lipidbased nanocarriers into clinical practice requires addressing these hurdles. To sum up, lipidbased nanocarriers are a viable strategy to improve the effectiveness of therapy for ovarian cancer. With their more focused medication administration and lower systemic toxicity, they may completely change the way ovarian cancer is treated and increase patient survival rates. Lipidbased nanocarriers need to be further researched and developed to become a therapeutically viable treatment for ovarian cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA