RESUMEN
Asthma in the elderly is being recognized as more severe, resistant to standard therapies, and having greater morbidity. Therefore, it comes important to understand the impact of aging-associated airway structure and function changes towards pathogenesis of asthma in the elderly. Here, airway smooth muscle plays important roles in airway hyperreactivity and structural remodeling. The role of smooth muscle in asthma can be modulated by growth factors (including neurotrophins such as brain-derived neurotrophic factor (BDNF)) and pro-inflammatory senescence factors. In this study, we investigated aging effects on airway hyperreactivity, structural remodeling, inflammation, and senescence in a mouse model of allergic asthma. C57BL/6J wildtype mice or smooth muscle-specific BDNF knockout mice at 4, 18 and 24 months of age were intranasally exposed to mixed allergens (ovalbumin, aspergillus, Alternaria, and house dust mite) over 4 weeks. Assessing lung function by FlexiVent, we found that compared with 4 month old mice, 18 and 24 month old C57BL/6J mice showed decreased airway resistance and increased airway compliance after PBS or MA treatment. Deletion of smooth muscle BDNF blunted airway hyperreactivity in aged mice. Lung histology analysis revealed that aging increased bronchial airway thickness and decreased lung inflammation. Multiplex assays showed that aging largely reduced allergen-induced lung expression of proinflammatory chemokines and cytokines. By immunohistochemistry staining, we found that aging increased bronchial airway expression of senescence markers, including p21, phospho-p53 and phospho-gH2A.X. Our data suggest that aging associated increase of airway senescence in the context of allergen exposure may contribute to asthma pathology in the elderly.
RESUMEN
Asthma is a heterogenous chronic lung disease that affects nearly 340 million people globally. Airway hyperresponsiveness, remodeling (thickening, fibrosis), and mucus hypersecretion are some hallmarks of asthma. With several current treatments having serious side effects from long-term use, and a proportion of patients with uncontrolled asthma, there is urgent need for new therapies. With increasing understanding of asthma pathophysiology, there is a recognized need to target therapies to specific cell types of the airway which necessitates identification of delivery systems that can overcome increased mucus and thickened airways. Nanoparticles (NPs) that are highly customizable (material, size, charge, surface modification) are a potential solution for delivery systems of a wide variety of cargoes (nucleic acids, proteins, and/or small molecules), as well as sole therapeutics for asthma. However, there is need to consider the safety of the NPs in terms of potential for inflammation, toxicity, non-specific targets, and accumulation in organs. Ongoing clinical trials using NPs, some FDA-approved for therapeutics in other diseases, provide confidence regarding potential safety and efficacy of NPs in asthma treatment. This review highlights the current state of the use of NPs in asthma, identifying opportunities for further improvements in NP design and utilization for targeting this chronic lung disease.
RESUMEN
Inflammatory cell infiltration is a characteristic feature of COPD and correlates directly with the severity of the disease. Interleukin-23 (IL-23) is a pro-inflammatory cytokine that regulates Th-17 inflammation, which mediates many pathophysiological events in COPD. The primary goal of this study was to determine the role of IL-23 as a mediator of key pathologic processes in cigarette smoke-induced COPD. In this study, we report an increase in IL23 gene expression in the lung biopsies of COPD patients compared to controls and identified a positive correlation between IL23 gene expression and disease severity. In a cigarette smoke-induced murine emphysema model, the suppression of IL-23 with a monoclonal blocking antibody reduced the severity of cigarette smoke-induced murine emphysema. Mechanistically, the suppression of IL-23 was associated with a reduction in immune cell infiltration, oxidative stress injury, and apoptosis, suggesting a role for IL-23 as an essential immune mediator of the inflammatory processes in the pathogenesis of CS-induced emphysema.
RESUMEN
Nicotine exposure in the context of smoking or vaping worsens airway function. Although commonly thought to exert effects through the peripheral nervous system, we previously showed airway smooth muscle (ASM) expresses nicotinic acetylcholine receptors (nAChRs), particularly alpha7 subtype (α7nAChR) with functional effects on contractility and metabolism. However, the mechanisms of nAChR regulation and downstream effects in ASM are not fully understood. Using human ASM cells from non-asthmatics vs. mild-moderate asthmatics, we tested the hypothesis that nAChR-specific ER chaperones RIC-3 and TMEM35 promote cell surface localization of α7nAChR with downstream influence on its functionality: effects exacerbated by inflammation. We found that mild-moderate asthma and exposure to pro-inflammatory cytokines relevant to asthma promote chaperone and α7nAChR expression in ASM. Downstream, ER stress was linked to nicotine/α7nAChR signaling, where RIC-3 and TMEM35 regulate nicotine-induced ER stress, Ca2+ regulation and ASM cell proliferation. Overall, our data highlights the importance α7nAChR chaperones in mediating and modulating nicotine effects in ASM towards airway contractility and remodeling.
RESUMEN
Airway smooth muscle (ASM) cells play important roles in airway remodeling of asthma. Our previous studies show that in vivo administration of glial-derived neurotrophic factor (GDNF) in mice induces thickening and collagen deposition in bronchial airways, whereas chelation of GDNF by GFRα1-Fc attenuates airway remodeling in the context of allergen exposure. To determine whether GDNF has direct effects on ASM, in this study, we examined GDNF in ASM cells from normal versus asthmatic humans. We found that GDNF treatment of human ASM cells had only minor effects on cell proliferation and migration, intracellular expression or extracellular deposition of collagen I (COL1), collagen III (COL3), and fibronectin. Endoplasmic reticulum (ER) stress response and mitochondrial function have been implicated in asthma. We investigated whether GDNF regulates these aspects in human ASM. We found that GDNF treatment did not affect ER stress protein expression in normal or asthmatic cells. However, GDNF treatment impaired mitochondrial morphology in ASM but without significant effects on mitochondrial respiration. Thus, it is likely that in vivo effects of GDNF on airway remodeling per se involve cell types other than those on ASM, and thus ASM may serve more as a source of GDNF rather than a target.NEW & NOTEWORTHY Our previous study suggests that glial-derived neurotrophic factor (GDNF) is involved in allergen-induced airway hyperreactivity and remodeling in vivo. Here, we show that GDNF has no direct effects in remodeling of human airway smooth muscle (ASM) but GDNF dysregulates mitochondrial morphology in human ASM in the context of asthma.
Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Proliferación Celular , Factor Neurotrófico Derivado de la Línea Celular Glial , Mitocondrias , Miocitos del Músculo Liso , Humanos , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Asma/metabolismo , Asma/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Femenino , Masculino , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Bronquios/patologíaRESUMEN
Bronchial airways and lung parenchyma undergo both static and dynamic stretch in response to normal breathing as well as in the context of insults such as mechanical ventilation (MV) or in diseases such as asthma and chronic obstructive pulmonary disease (COPD) which lead to airway remodeling involving increased extracellular matrix (ECM) production. Here, the role of fibroblasts is critical, but the relationship between stretch- and fibroblast-induced ECM remodeling under these conditions is not well-explored. Piezo (PZ) channels play a role in mechanotransduction in many cell and organ systems, but their role in mechanical stretch-induced airway remodeling is not known. To explore this, we exposed human lung fibroblasts to 10% static stretch on a background of 5% oscillations for 48 h, with no static stretch considered controls. Collagen I, fibronectin, alpha-smooth muscle actin (α-SMA), and Piezo 1 (PZ1) expression was determined in the presence or absence of Yoda1 (PZ1 agonist) or GsMTx4 (PZ1 inhibitor). Collagen I, fibronectin, and α-SMA expression was increased by stretch and Yoda1, whereas pretreatment with GsMTx4 or knockdown of PZ1 by siRNA blunted this effect. Acute stretch in the presence and absence of Yoda1 demonstrated activation of the ERK pathway but not Smad. Measurement of [Ca2+]i responses to histamine showed significantly greater responses following stretch, effects that were blunted by knockdown of PZ1. Our findings identify an essential role for PZ1 in mechanical stretch-induced production of ECM mediated by ERK phosphorylation and Ca2+ influx in lung fibroblasts. Targeting PZ channels in fibroblasts may constitute a novel approach to ameliorate airway remodeling by decreasing ECM deposition.NEW & NOTEWORTHY The lung is an inherently mechanosensitive organ that can respond to mechanical forces in adaptive or maladaptive ways, including via remodeling resulting in increased fibrosis. We explored the mechanisms that link mechanical forces to remodeling using human lung fibroblasts. We found that mechanosensitive Piezo channels increase with stretch and mediate extracellular matrix formation and the fibroblast-to-myofibroblast transition that occurs with stretch. Our data highlight the importance of Piezo channels in lung mechanotransduction toward remodeling.
Asunto(s)
Fibroblastos , Canales Iónicos , Pulmón , Mecanotransducción Celular , Humanos , Pulmón/metabolismo , Pulmón/citología , Fibroblastos/metabolismo , Canales Iónicos/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Actinas/metabolismo , Células Cultivadas , Estrés Mecánico , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Calcio/metabolismo , Venenos de Araña , Péptidos y Proteínas de Señalización IntercelularRESUMEN
Fibrosis in the lung is thought to be driven by epithelial cell dysfunction and aberrant cell-cell interactions. Unveiling the molecular mechanisms of cellular plasticity and cell-cell interactions is imperative to elucidating lung regenerative capacity and aberrant repair in pulmonary fibrosis. By mining publicly available RNA-Seq data sets, we identified loss of CCAAT enhancer-binding protein alpha (CEBPA) as a candidate contributor to idiopathic pulmonary fibrosis (IPF). We used conditional KO mice, scRNA-Seq, lung organoids, small-molecule inhibition, and potentially novel gene manipulation methods to investigate the role of CEBPA in lung fibrosis and repair. Long-term (6 months or more) of Cebpa loss in AT2 cells caused spontaneous fibrosis and increased susceptibility to bleomycin-induced fibrosis. Cebpa knockout (KO) in these mice significantly decreased AT2 cell numbers in the lung and reduced expression of surfactant homeostasis genes, while increasing inflammatory cell recruitment as well as upregulating S100a8/a9 in AT2 cells. In vivo treatment with an S100A8/A9 inhibitor alleviated experimental lung fibrosis. Restoring CEBPA expression in lung organoids ex vivo and during experimental lung fibrosis in vivo rescued CEBPA deficiency-mediated phenotypes. Our study establishes a direct mechanistic link between CEBPA repression, impaired AT2 cell identity, disrupted tissue homeostasis, and lung fibrosis.
Asunto(s)
Bleomicina , Proteínas Potenciadoras de Unión a CCAAT , Homeostasis , Ratones Noqueados , Animales , Ratones , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Bleomicina/toxicidad , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/inducido químicamente , Humanos , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/metabolismo , Organoides/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , MasculinoRESUMEN
Supplemental O2 (hyperoxia) is a critical intervention for premature infants (<34 weeks) but consequently is associated with development of bronchial airway hyperreactivity (AHR) and asthma. Clinical practice shifted toward the use of moderate hyperoxia (<60% O2), but risk for subsequent airway disease remains. In mouse models of moderate hyperoxia, neonatal mice have increased AHR with effects on airway smooth muscle (ASM), a cell type involved in airway tone, bronchodilation, and remodeling. Understanding mechanisms by which moderate O2 during the perinatal period initiates sustained airway changes is critical to drive therapeutic advancements toward treating airway diseases. We propose that cellular clock factor BMAL1 is functionally important in developing mouse airways. In adult mice, cellular clocks target pathways highly relevant to asthma pathophysiology and Bmal1 deletion increases inflammatory response, worsens lung function, and impacts survival outcomes. Our understanding of BMAL1 in the developing lung is limited, but our previous findings show functional relevance of clocks in human fetal ASM exposed to O2. Here, we characterize Bmal1 in our established mouse neonatal hyperoxia model. Our data show that Bmal1 KO deleteriously impacts the developing lung in the context of O2 and these data highlight the importance of neonatal sex in understanding airway disease.
Asunto(s)
Factores de Transcripción ARNTL , Animales Recién Nacidos , Hiperoxia , Animales , Hiperoxia/metabolismo , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Ratones , Femenino , Masculino , Pulmón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Caracteres SexualesRESUMEN
The disruption of calcium signaling associated with polycystin deficiency has been proposed as the primary event underlying the increased abnormally patterned epithelial cell growth characteristic of Polycystic Kidney Disease. Calcium can be regulated through mechanotransduction, and the mechanosensitive cation channel Piezo1 has been implicated in sensing of intrarenal pressure and in urinary osmoregulation. However, a possible role for PIEZO1 in kidney cystogenesis remains undefined. We hypothesized that cystogenesis in ADPKD reflects altered mechanotransduction, suggesting activation of mechanosensitive cation channels as a therapeutic strategy for ADPKD. Here, we show that Yoda-1 activation of PIEZO1 increases intracellular Ca 2+ and reduces forskolin-induced cAMP levels in mIMCD3 cells. Yoda-1 reduced forskolin-induced IMCD cyst surface area in vitro and in mouse metanephros ex vivo in a dose-dependent manner. Knockout of polycystin-2 dampened the efficacy of PIEZO1 activation in reducing both cAMP levels and cyst surface area in IMCD3 cells. However, collecting duct-specific Piezo1 knockout neither induced cystogenesis in wild-type mice nor affected cystogenesis in the Pkd1 RC/RC model of ADPKD. Our study suggests that polycystin-2 and PIEZO1 play a role in mechanotransduction during cystogenesis in vitro , and ex vivo , but that in vivo cyst expansion may require inactivation or repression of additional suppressors of cystogenesis and/or growth. Our study provides a preliminary proof of concept for PIEZO1 activation as a possible component of combination chemotherapy to retard or halt cystogenesis and/or cyst growth.
RESUMEN
Loss of proteostasis and cellular senescence have been previously established as characteristics of aging; however, their interaction in the context of lung aging and potential contributions to aging-associated lung remodeling remains understudied. In this study, we aimed to characterize endoplasmic reticulum (ER) stress response, cellular senescence, and their interaction in relation to extracellular matrix (ECM) production in lung fibroblasts from young (25-45 yr) and old (>60 yr) humans. Fibroblasts from young and old patients without significant preexisting lung disease were exposed to vehicle, MG132, etoposide, or salubrinal. Afterward, cells and cell lysates or supernatants were analyzed for ER stress, cellular senescence, and ECM changes using protein analysis, proliferation assay, and senescence-associated beta-galactosidase (SA-ß-Gal) staining. At baseline, fibroblasts from aging individuals showed increased levels of ER stress (ATF6 and PERK), senescence (p21 and McL-1), and ECM marker (COL1A1) compared to those from young individuals. Upon ER stress induction and etoposide exposure, fibroblasts showed an increase in senescence (SA-ß-Gal, p21, and Cav-1), ER stress (PERK), and ECM markers (COL1A1 and LUM) compared to vehicle. Additionally, IL-6 and IL-8 levels were increased in the supernatants of MG132- and etoposide-treated fibroblasts, respectively. Finally, the ER stress inhibitor salubrinal decreased the expression of p21 compared to vehicle and MG132 treatments; however, salubrinal inhibited COL1A1 but not p21 expression in MG132-treated fibroblasts. Our study suggests that ER stress response plays an important role in establishment and maintenance of a senescence phenotype in lung fibroblasts and therefore contributes to altered remodeling in the aging lung.NEW & NOTEWORTHY The current study establishes functional links between endoplasmic reticulum (ER) stress and cellular senescence per se in the specific context of aging human lung fibroblasts. Recognizing that the process of aging per se is complex, modulated by the myriad of lifelong and environmental exposures, it is striking to note that chronic ER stress may play a crucial role in the establishment and maintenance of cellular senescence in lung fibroblasts.
Asunto(s)
Senescencia Celular , Estrés del Retículo Endoplásmico , Fibroblastos , Pulmón , Humanos , Senescencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Persona de Mediana Edad , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Adulto , Anciano , Masculino , Femenino , Matriz Extracelular/metabolismo , Tiourea/farmacología , Tiourea/análogos & derivados , Células Cultivadas , Cinamatos/farmacología , Factor de Transcripción Activador 6/metabolismo , Proliferación Celular/efectos de los fármacos , Etopósido/farmacología , Colágeno Tipo I/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , eIF-2 Quinasa/metabolismoRESUMEN
Alteration in the normal mechanical forces of breathing can contribute to changes in contractility and remodeling characteristic of airway diseases, but the mechanisms that mediate these effects in airway cells are still under investigation. Airway smooth muscle (ASM) cells contribute to both contractility and extracellular matrix (ECM) remodeling. In this study, we explored ASM mechanisms activated by mechanical stretch, focusing on mechanosensitive piezo channels and the key Ca2+ regulatory protein stromal interaction molecule 1 (STIM1). Expression of Ca2+ regulatory proteins, including STIM1, Orai1, and caveolin-1, mechanosensitive ion channels Piezo-1 and Piezo-2, and NLRP3 inflammasomes were upregulated by 10% static stretch superimposed on 5% cyclic stretch. These effects were blunted by STIM1 siRNA. Histamine-induced [Ca2+]i responses and inflammasome activation were similarly blunted by STIM1 knockdown. These data show that the effects of mechanical stretch in human ASM cells are mediated through STIM1, which activates multiple pathways, including Piezo channels and the inflammasome, leading to potential downstream changes in contractility and ECM remodeling.NEW & NOTEWORTHY Mechanical forces on the airway can contribute to altered contractility and remodeling in airway diseases, but the mechanisms are not clearly understood. Using human airway smooth muscle cells exposed to cyclic forces with static stretch to mimic breathing and static pressure, we found that the effects of stretch are mediated through STIM1, resulting in the activation of multiple pathways, including Piezo channels and the inflammasome, with potential downstream influences on contractility and remodeling.
Asunto(s)
Miocitos del Músculo Liso , Molécula de Interacción Estromal 1 , Humanos , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 1/genética , Miocitos del Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Inflamasomas/metabolismo , Estrés Mecánico , Mecanotransducción Celular , Músculo Liso/metabolismo , Canales Iónicos/metabolismo , Caveolina 1/metabolismo , Caveolina 1/genética , Transducción de Señal , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Calcio/metabolismo , Células Cultivadas , Contracción Muscular/fisiología , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Proteína ORAI1/metabolismo , Proteína ORAI1/genéticaRESUMEN
INPP4A has been shown to be involved in the regulation of cell proliferation and apoptosis of multiple cell types including fibroblasts. Previous reports from our group have demonstrated the role of inositol polyphosphate 4-phosphatase Type I A (INPP4A) in these functions. Though existing evidences suggest a critical role for INPP4A in the maintenance of lung homeostasis, its role in chronic lung diseases is relatively under explored. In the current study, we made an attempt to understand the regulation of INPP4A in idiopathic pulmonary fibrosis (IPF). Through integration of relevant INPP4A gene expression data from public repositories with our results from in vitro experiments and mouse models, we show that INPP4A is altered in IPF. Interestingly, the direction of the change is dependent both on the disease stage and the region of the lung used. INPP4A was found to be upregulated when analyzed in lung sample representative of the whole lung, but was downregulated in the fibrotic regions of the lung. Similarly, INPP4A was found to be high, compared to controls, only in the early stage of the disease. Though the observed increase in INPP4A was found to be negatively correlated to physiological indices, FVC, and DLCO, of lung function, treatment with anti-INPP4A antibody worsened the condition in bleomycin treated mice. These contrasting results taken together are suggestive of a nuanced regulation of INPP4A in IPF which is dependent on the disease stage, cellular state and extent of fibrosis in the lung region being analyzed.
Asunto(s)
Fibrosis Pulmonar Idiopática , Monoéster Fosfórico Hidrolasas , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/genética , Animales , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Ratones , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Fibroblastos/metabolismo , FemeninoRESUMEN
Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.
Asunto(s)
Asma , Broncoconstricción , Regulación hacia Abajo , Miocitos del Músculo Liso , Proteína Fosfatasa 2 , Asma/metabolismo , Asma/patología , Humanos , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Animales , Ratones , Regulación hacia Abajo/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/efectos de los fármacos , Broncoconstricción/efectos de los fármacos , Músculo Liso/metabolismo , Músculo Liso/patología , Músculo Liso/efectos de los fármacos , Masculino , Bronquios/patología , Bronquios/metabolismo , Bronquios/efectos de los fármacos , Calcio/metabolismo , Femenino , Ratones Endogámicos C57BLRESUMEN
Airway remodeling is a cardinal feature of asthma, associated with increased airway smooth muscle (ASM) cell mass and upregulation of extracellular matrix deposition. Exaggerated ASM cell migration contributes to excessive ASM mass. Previously, we demonstrated the alleviating role of Kp (kisspeptin) receptor (KISS1R) activation by Kp-10 in mitogen (PDGF [platelet-derived growth factor])-induced human ASM cell proliferation in vitro and airway remodeling in vivo in a mouse model of asthma. Here, we examined the mechanisms by which KISS1R activation regulates mitogen-induced ASM cell migration. KISS1R activation using Kp-10 significantly inhibited PDGF-induced ASM cell migration, further confirmed using KISS1R shRNA. Furthermore, KISS1R activation modulated F/G actin dynamics and the expression of promigration proteins like CDC42 (cell division control protein 42) and cofilin. Mechanistically, we observed reduced ASM RhoA-GTPAse with KISS1R activation. The antimigratory effect of KISS1R was abolished by PKA (protein kinase A)-inhibitory peptide. Conversely, KISS1R activation significantly increased cAMP and phosphorylation of CREB (cAMP-response element binding protein) in PDGF-exposed ASM cells. Overall, these results highlight the alleviating properties of Kp-10 in the context of airway remodeling.
Asunto(s)
Movimiento Celular , Kisspeptinas , Miocitos del Músculo Liso , Receptores de Kisspeptina-1 , Transducción de Señal , Humanos , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , Proteína de Unión al GTP cdc42/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Kisspeptinas/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1/metabolismo , Receptores de Kisspeptina-1/genética , Proteína de Unión al GTP rhoA/metabolismoRESUMEN
Alveolar type I (ATI) cells cover >95% of the lung's distal surface and facilitate gas exchange through their exceptionally thin shape. ATI cells in vivo are replenished by alveolar type II cell division and differentiation, but a detailed understanding of ATI biology has been hampered by the challenges in direct isolation of these cells due to their fragility and incomplete understanding of the signaling interactions that promote differentiation of ATII to ATI cells. Here, we explored the signals that maintain ATII versus promote ATI fates in three-dimensional (3-D) organoid cultures and developed a human alveolar type I differentiation medium (hATIDM) suitable for generating ATI cells from either mixed distal human lung cells or purified ATII cells. This media adds bone morphogenetic protein 4 (BMP4) and removes epidermal growth factor (EGF), Wnt agonist CHIR99021, and transforming growth factor-beta (TGF-ß) inhibitor SB431542 from previously developed alveolar organoid culture media. We demonstrate that BMP4 promotes expression of the ATI marker gene AGER and HOPX, whereas CHIR99021 and SB431542 maintain expression of the ATII marker gene SFTPC. The human ATI spheroids generated with hATIDM express multiple molecular and morphological features reminiscent of human ATI cells. Our results demonstrate that signaling interactions among BMP, TGF-ß, and Wnt signaling pathways in alveolar spheroids and distal lung organoids including IPF-organoids coordinate human ATII to ATI differentiation.NEW & NOTEWORTHY Alveolar type I (ATI) epithelial cells perform essential roles in maintaining lung function but have been challenging to study. We explored the signals that promote ATI fate in 3-D organoid cultures generated from either mixed distal human lung cells or purified alveolar type II (ATII) cells. This work fills an important void in our experimental repertoire for studying alveolar epithelial cells and identifies signals that promote human ATII to ATI cell differentiation.
Asunto(s)
Células Epiteliales Alveolares , Benzamidas , Dioxoles , Alveolos Pulmonares , Humanos , Alveolos Pulmonares/metabolismo , Células Cultivadas , Células Epiteliales Alveolares/metabolismo , Pulmón , Diferenciación Celular , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Pulmonary hypertension (PH) associated with chronic kidney disease (CKD) (PH-CKD) affects approximately 20%-40% of CKD patients and is associated with increased morbidity and mortality. PH and CKD are both pathophysiologically associated with nitric oxide (NO) deficiency. The NO pathway, an important therapeutic domain in pulmonary arterial hypertension (PAH), is an intriguing but unexplored target in PH-CKD. We sought to improve understanding of the clinical significance of the NO pathway in patients with PH-CKD by assessing the hemodynamic response to inhaled NO (iNO) during right heart catheterization (RHC). In this retrospective cohort study, patients with diagnosis codes of PH and stage IV/V CKD or end-stage renal disease and estimated glomerular filtration rate < 60 mL/min/body surface area who underwent RHC and hemodynamic drug study between July 2011 and June 2021 were eligible. Patients with mean pulmonary artery pressure (mPAP) > 20 mmHg and pulmonary vascular resistance (PVR) > 3 Wood units were included. The final cohort included 37 patients (45.9% female, mean age 72.5 ± 9.7 years). A total of 56.7% of the cohort (21/37) had precapillary PH, while 43.2% (16/37) had combined precapillary postcapillary PH (Cpc-PH). Median survival was 3.1 years after RHC. iNO was associated with a significant decrease in both mPAP and PVR. Hemodynamic changes in mPAP and PVR were similar in precapillary and Cpc-PH groups. Among a small subset (n = 14) who were subsequently treated with PAH-targeted therapy, treatment response was mixed and did not reveal significant benefit. Further studies are warranted to better define the potential role of PAH therapy in PH-CKD.
RESUMEN
Our previous study showed that glial-derived neurotrophic factor (GDNF) expression is upregulated in asthmatic human lungs, and GDNF regulates calcium responses through its receptor GDNF family receptor α1 (GFRα1) and RET receptor in human airway smooth muscle (ASM) cells. In this study, we tested the hypothesis that airway GDNF contributes to airway hyperreactivity (AHR) and remodeling using a mixed allergen mouse model. Adult C57BL/6J mice were intranasally exposed to mixed allergens (ovalbumin, Aspergillus, Alternaria, house dust mite) over 4 wk with concurrent exposure to recombinant GDNF, or extracellular GDNF chelator GFRα1-Fc. Airway resistance and compliance to methacholine were assessed using FlexiVent. Lung expression of GDNF, GFRα1, RET, collagen, and fibronectin was examined by RT-PCR and histology staining. Allergen exposure increased GDNF expression in bronchial airways including ASM and epithelium. Laser capture microdissection of the ASM layer showed increased mRNA for GDNF, GFRα1, and RET in allergen-treated mice. Allergen exposure increased protein expression of GDNF and RET, but not GFRα1, in ASM. Intranasal administration of GDNF enhanced baseline responses to methacholine but did not consistently potentiate allergen effects. GDNF also induced airway thickening, and collagen deposition in bronchial airways. Chelation of GDNF by GFRα1-Fc attenuated allergen-induced AHR and particularly remodeling. These data suggest that locally produced GDNF, potentially derived from epithelium and/or ASM, contributes to AHR and remodeling relevant to asthma.NEW & NOTEWORTHY Local production of growth factors within the airway with autocrine/paracrine effects can promote features of asthma. Here, we show that glial-derived neurotrophic factor (GDNF) is a procontractile and proremodeling factor that contributes to allergen-induced airway hyperreactivity and tissue remodeling in a mouse model of asthma. Blocking GDNF signaling attenuates allergen-induced airway hyperreactivity and remodeling, suggesting a novel approach to alleviating structural and functional changes in the asthmatic airway.
Asunto(s)
Asma , Factor Neurotrófico Derivado de la Línea Celular Glial , Animales , Ratones , Alérgenos , Colágeno , Modelos Animales de Enfermedad , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Cloruro de Metacolina/farmacología , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-ret/metabolismoRESUMEN
Supplemental O2 remains a necessary intervention for many premature infants (<34 wk gestation). Even moderate hyperoxia (<60% O2) poses a risk for subsequent airway disease, thereby predisposing premature infants to pediatric asthma involving chronic inflammation, airway hyperresponsiveness (AHR), airway remodeling, and airflow obstruction. Moderate hyperoxia promotes AHR via effects on airway smooth muscle (ASM), a cell type that also contributes to impaired bronchodilation and remodeling (proliferation, altered extracellular matrix). Understanding mechanisms by which O2 initiates long-term airway changes in prematurity is critical for therapeutic advancements for wheezing disorders and asthma in babies and children. Immature or dysfunctional antioxidant systems in the underdeveloped lungs of premature infants thereby heightens susceptibility to oxidative stress from O2. The novel gasotransmitter hydrogen sulfide (H2S) is involved in antioxidant defense and has vasodilatory effects with oxidative stress. We previously showed that exogenous H2S exhibits bronchodilatory effects in human developing airway in the context of hyperoxia exposure. Here, we proposed that exogenous H2S would attenuate effects of O2 on airway contractility, thickness, and remodeling in mice exposed to hyperoxia during the neonatal period. Using functional [flexiVent; precision-cut lung slices (PCLS)] and structural (histology; immunofluorescence) analyses, we show that H2S donors mitigate the effects of O2 on developing airway structure and function, with moderate O2 and H2S effects on developing mouse airways showing a sex difference. Our study demonstrates the potential applicability of low-dose H2S toward alleviating the detrimental effects of hyperoxia on the premature lung.NEW & NOTEWORTHY Chronic airway disease is a short- and long-term consequence of premature birth. Understanding effects of O2 exposure during the perinatal period is key to identify targetable mechanisms that initiate and sustain adverse airway changes. Our findings show a beneficial effect of exogenous H2S on developing mouse airway structure and function with notable sex differences. H2S donors alleviate effects of O2 on airway hyperreactivity, contractility, airway smooth muscle thickness, and extracellular matrix deposition.
Asunto(s)
Asma , Sulfuro de Hidrógeno , Hiperoxia , Humanos , Embarazo , Niño , Animales , Femenino , Ratones , Masculino , Hiperoxia/metabolismo , Animales Recién Nacidos , Sulfuro de Hidrógeno/farmacología , Antioxidantes/farmacología , Pulmón/metabolismo , Asma/patologíaRESUMEN
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.