Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Cardiovasc Magn Reson ; : 101097, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293786

RESUMEN

BACKGROUND: Coronary computed tomography angiography (CCTA) is recommended as the first line diagnostic imaging modality in low to intermediate risk individuals suspected of stable coronary artery disease (CAD). However, CCTA exposes patients to ionising radiation and potentially nephrotoxic contrast agents. Invasive coronary angiography (ICA) is the gold-standard investigation to guide coronary revascularisation strategy, however, invasive procedures incur an inherent risk to the patient. Coronary magnetic resonance angiography (Coronary MRA) avoids these issues. Nevertheless, clinical implementation is currently limited due to extended scanning durations, inconsistent image quality, and consequent lack of diagnostic accuracy. Several technical Coronary MRA innovations including advanced respiratory motion correction with 100% scan efficiency (no data rejection), fast image acquisition with motion-corrected undersampled image reconstruction and deep-learning (DL)-based automated planning have been implemented and now await clinical validation in multi-centre trials. METHODS: The objective of the iNav-AUTO CMRA prospective multi-centre study is to evaluate the diagnostic accuracy of a newly developed, state-of-the-art, standardised, and automated Coronary MRA framework compared to CCTA in 230 patients undergoing clinical investigation for CAD. The study protocol mandates the administration of oral beta-blockers to decrease heart rate to below 60bpm and the use of sublingual nitroglycerine spray to induce vasodilation. Additionally, the study incorporates the utilisation of standardised postprocessing with sliding-thin-slab multiplanar reformatting, in combination with evaluation of the source images, to optimize the visualisation of coronary artery stenosis. DISCUSSION: If proven effective, Coronary MRA could provide a non-invasive, needle-free, yet also clinically viable, alternative to CCTA. TRIAL REGISTRATION: This study is registered at clinicaltrials.gov (NCT05473117).

2.
Npj Imaging ; 2(1): 33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301014

RESUMEN

Heart failure (HF) affects 64 million people globally with enormous societal and healthcare costs. Myocardial fibrosis, characterised by changes in collagen content drives HF. Despite evidence that collagen type III (COL3) content changes during myocardial fibrosis, in vivo imaging of COL3 has not been achieved. Here, we discovered the first imaging probe that binds to COL3 with high affinity and specificity, by screening candidate peptide-based probes. Characterisation of the probe showed favourable magnetic and biodistribution properties. The probe's potential for in vivo molecular cardiac magnetic resonance imaging was evaluated in a murine model of myocardial infarction. Using the new probe, we were able to map and quantify, previously undetectable, spatiotemporal changes in COL3 after myocardial infarction and monitor response to treatment. This innovative probe provides a promising tool to non-invasively study the unexplored roles of COL3 in cardiac fibrosis and other cardiovascular conditions marked by changes in COL3.

3.
J Cardiovasc Magn Reson ; : 101100, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306195

RESUMEN

BACKGROUND: The diagnosis of myocarditis by CMR requires the use of T2 and T1 weighted imaging, ideally incorporating parametric mapping. Current 2D mapping sequences are acquired sequentially and involve multiple breath-holds resulting in prolonged scan times and anisotropic image resolution. We developed an isotropic free-breathing 3D whole-heart sequence which allows simultaneous T1 and T2 mapping and validated it in patients with suspected acute myocarditis. METHODS: Eighteen healthy volunteers and 28 patients with suspected myocarditis underwent conventional 2D T1 and T2 mapping with whole heart coverage and 3D joint T1/T2 mapping on a 1.5T scanner. Acquisition time, image quality, and diagnostic performance were compared. Qualitative analysis was performed using a 4-point Likert scale. Bland-Altman plots were used to assess the quantitative agreement between 2D and 3D sequences. RESULTS: The 3D T1/T2 sequence was acquired in 8mins 26s under free breathing, whereas 2D T1 and T2 sequences were acquired with breath holds in 11mins 44s (p=0.0001). All 2D images were diagnostic. For 3D images, 89% of T1 and 96% of T2 images were diagnostic with no significant difference in the proportion of diagnostic images for the 3D and 2D T1 (p=0.2482) and T2 maps (p=1.0000). Systematic bias in T1 was noted with biases of 102ms, 115ms, and 152ms for basal-apical segments, with a larger bias for higher T1 values. Good agreement between T2 values for 3D and 2D techniques was found (bias of 1.8ms, 3.9ms, and 3.6ms for basal-apical segments). The sensitivity and specificity of the 3D sequence for diagnosing acute myocarditis was 74% (95% confidence interval [CI] 49-91%) and 83% (36-100%) respectively, with an estimated c-statistic (95% CI) of 0.85 (0.79-0.91) and no statistically significant difference between the 2D and 3D sequences for the detection of acute myocarditis for T1 (p=0.2207) or T2 (p=1.0000). CONCLUSION: Free-breathing whole heart 3D joint T1/T2 mapping was comparable to 2D mapping sequences with respect to diagnostic performance, but with the added advantages of free-breathing, and shorter scan times. Further work is required to address the bias noted at high T1 values, but this did not significantly impact on diagnostic accuracy.

4.
Clin Res Cardiol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102000

RESUMEN

BACKGROUND: Active inflammatory bowel disease (A-IBD) but not remission (R-IBD) has been associated with an increased risk of cardiovascular death and hospitalization for heart failure. OBJECTIVES: Using cardiovascular magnetic resonance (CMR), this study aims to assess adverse myocardial remodeling in patients with IBD in correlation with disease activity. METHODS: Forty-four IBD patients without cardiovascular disease (24 female, median-age: 39.5 years, 26 A-IBD, 18 R-IBD) and 44 matched healthy volunteers (HV) were prospectively enrolled. The disease stage was determined by endoscopic and patient-reported criteria. Participants underwent CMR for cardiac phenotyping: cine imaging and strain analysis were performed to assess ventricular function. T1 mapping, extracellular volume and late-gadolinium enhanced images were obtained to assess focal and diffuse myocardial fibrosis. Simultaneous T1 and T2 elevation (T1 > 1049.3 ms, T2 > 54 ms) was considered to indicate a myocardial segment was inflamed. RESULTS: 16/44 (16.4%) IBD patients described dyspnea on exertion and 10/44 (22.7%) reported chest pain. A-IBD patients showed impaired ventricular function, indicated by reduced global circumferential and radial strain despite preserved left-ventricular ejection fraction. 16% of all IBD patients had focal fibrosis in a non-ischemic pattern. A-IDB patients had increased markers of diffuse left ventricular fibrosis (T1-values: A-IBD: 1022.0 ± 34.83 ms, R-IBD: 1010.10 ± 32.88 ms, HV: 990.61 ± 29.35 ms, p < .01). Significantly more participants with A-IDB (8/26, 30.8%) had at least one inflamed myocardial segment than patients in remission (0/18) and HV (1/44, 2.3%, p < .01). Markers of diffuse fibrosis correlated with disease activity. CONCLUSION: This study, using CMR, provides evidence of myocardial involvement and patterns of adverse left ventricular remodeling in patients with IBD. CLINICAL TRIAL REGISTRATION: ISRCTN30941346.

5.
Magn Reson Med ; 92(6): 2433-2446, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39075868

RESUMEN

PURPOSE: To develop a framework for simultaneous three-dimensional (3D) mapping of T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat signal fraction in the liver at 0.55 T. METHODS: The proposed sequence acquires four interleaved 3D volumes with a two-echo Dixon readout. T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ are encoded into each volume via preparation modules, and dictionary matching allows simultaneous estimation of T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and M 0 $$ {M}_0 $$ for water and fat separately. 2D image navigators permit respiratory binning, and motion fields from nonrigid registration between bins are used in a nonrigid respiratory-motion-corrected reconstruction, enabling 100% scan efficiency from a free-breathing acquisition. The integrated nature of the framework ensures the resulting maps are always co-registered. RESULTS: T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat-signal-fraction measurements in phantoms correlated strongly (adjusted r 2 > 0 . 98 $$ {r}^2>0.98 $$ ) with reference measurements. Mean liver tissue parameter values in 10 healthy volunteers were 427 ± 22 $$ 427\pm 22 $$ , 47 . 7 ± 3 . 3 ms $$ 47.7\pm 3.3\;\mathrm{ms} $$ , and 7 ± 2 % $$ 7\pm 2\% $$ for T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat signal fraction, giving biases of 71 $$ 71 $$ , - 30 . 0 ms $$ -30.0\;\mathrm{ms} $$ , and - 5 $$ -5 $$ percentage points, respectively, when compared to conventional methods. CONCLUSION: A novel sequence for comprehensive characterization of liver tissue at 0.55 T was developed. The sequence provides co-registered 3D T 1 $$ {\mathrm{T}}_1 $$ , T 2 $$ {\mathrm{T}}_2 $$ , and fat-signal-fraction maps with full coverage of the liver, from a single nine-and-a-half-minute free-breathing scan. Further development is needed to achieve accurate proton-density fat fraction (PDFF) estimation in vivo.


Asunto(s)
Tejido Adiposo , Algoritmos , Imagenología Tridimensional , Hígado , Imagen por Resonancia Magnética , Humanos , Hígado/diagnóstico por imagen , Imagenología Tridimensional/métodos , Tejido Adiposo/diagnóstico por imagen , Imagen por Resonancia Magnética/economía , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Fantasmas de Imagen , Respiración , Reproducibilidad de los Resultados , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Adulto , Interpretación de Imagen Asistida por Computador/métodos
6.
J Cardiovasc Magn Reson ; 26(2): 101051, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909656

RESUMEN

BACKGROUND: Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment of heart disease; however, limitations of CMR include long exam times and high complexity compared to other cardiac imaging modalities. Recently advancements in artificial intelligence (AI) technology have shown great potential to address many CMR limitations. While the developments are remarkable, translation of AI-based methods into real-world CMR clinical practice remains at a nascent stage and much work lies ahead to realize the full potential of AI for CMR. METHODS: Herein we review recent cutting-edge and representative examples demonstrating how AI can advance CMR in areas such as exam planning, accelerated image reconstruction, post-processing, quality control, classification and diagnosis. RESULTS: These advances can be applied to speed up and simplify essentially every application including cine, strain, late gadolinium enhancement, parametric mapping, 3D whole heart, flow, perfusion and others. AI is a unique technology based on training models using data. Beyond reviewing the literature, this paper discusses important AI-specific issues in the context of CMR, including (1) properties and characteristics of datasets for training and validation, (2) previously published guidelines for reporting CMR AI research, (3) considerations around clinical deployment, (4) responsibilities of clinicians and the need for multi-disciplinary teams in the development and deployment of AI in CMR, (5) industry considerations, and (6) regulatory perspectives. CONCLUSIONS: Understanding and consideration of all these factors will contribute to the effective and ethical deployment of AI to improve clinical CMR.

7.
Magn Reson Med ; 92(4): 1511-1524, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38872384

RESUMEN

PURPOSE: To develop and validate a highly efficient motion compensated free-breathing isotropic resolution 3D whole-heart joint T1/T2 mapping sequence with anatomical water/fat imaging at 0.55 T. METHODS: The proposed sequence takes advantage of shorter T1 at 0.55 T to acquire three interleaved water/fat volumes with inversion-recovery preparation, no preparation, and T2 preparation, respectively. Image navigators were used to facilitate nonrigid motion-compensated image reconstruction. T1 and T2 maps were jointly calculated by a dictionary matching method. Validations were performed with simulation, phantom, and in vivo experiments on 10 healthy volunteers and 1 patient. The performance of the proposed sequence was compared with conventional 2D mapping sequences including modified Look-Locker inversion recovery and T2-prepared balanced steady-SSFP sequence. RESULTS: The proposed sequence has a good T1 and T2 encoding sensitivity in simulation, and excellent agreement with spin-echo reference T1 and T2 values was observed in a standardized T1/T2 phantom (R2 = 0.99). In vivo experiments provided good-quality co-registered 3D whole-heart T1 and T2 maps with 2-mm isotropic resolution in a short scan time of about 7 min. For healthy volunteers, left-ventricle T1 mean and SD measured by the proposed sequence were both comparable with those of modified Look-Locker inversion recovery (640 ± 35 vs. 630 ± 25 ms [p = 0.44] and 49.9 ± 9.3 vs. 54.4 ± 20.5 ms [p = 0.42]), whereas left-ventricle T2 mean and SD measured by the proposed sequence were both slightly lower than those of T2-prepared balanced SSFP (53.8 ± 5.5 vs. 58.6 ± 3.3 ms [p < 0.01] and 5.2 ± 0.9 vs. 6.1 ± 0.8 ms [p = 0.03]). Myocardial T1 and T2 in the patient measured by the proposed sequence were in good agreement with conventional 2D sequences and late gadolinium enhancement. CONCLUSION: The proposed sequence simultaneously acquires 3D whole-heart T1 and T2 mapping with anatomical water/fat imaging at 0.55 T in a fast and efficient 7-min scan. Further investigation in patients with cardiovascular disease is now warranted.


Asunto(s)
Tejido Adiposo , Imagenología Tridimensional , Fantasmas de Imagen , Humanos , Imagenología Tridimensional/métodos , Masculino , Tejido Adiposo/diagnóstico por imagen , Adulto , Corazón/diagnóstico por imagen , Reproducibilidad de los Resultados , Algoritmos , Femenino , Imagen por Resonancia Magnética/métodos , Respiración , Agua Corporal/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Voluntarios Sanos
8.
Int J Cardiovasc Imaging ; 40(6): 1363-1376, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676848

RESUMEN

Contrast enhanced pulmonary vein magnetic resonance angiography (PV CE-MRA) has value in atrial ablation pre-procedural planning. We aimed to provide high fidelity, ECG gated PV CE-MRA accelerated by variable density Cartesian sampling (VD-CASPR) with image navigator (iNAV) respiratory motion correction acquired in under 4 min. We describe its use in part during the global iodinated contrast shortage. VD-CASPR/iNAV framework was applied to ECG-gated inversion and saturation recovery gradient recalled echo PV CE-MRA in 65 patients (66 exams) using .15 mmol/kg Gadobutrol. Image quality was assessed by three physicians, and anatomical segmentation quality by two technologists. Left atrial SNR and left atrial/myocardial CNR were measured. 12 patients had CTA within 6 months of MRA. Two readers assessed PV ostial measurements versus CTA for intermodality/interobserver agreement. Inter-rater/intermodality reliability, reproducibility of ostial measurements, SNR/CNR, image, and anatomical segmentation quality was compared. The mean acquisition time was 3.58 ± 0.60 min. Of 35 PV pre-ablation datasets (34 patients), mean anatomical segmentation quality score was 3.66 ± 0.54 and 3.63 ± 0.55 as rated by technologists 1 and 2, respectively (p = 0.7113). Good/excellent anatomical segmentation quality (grade 3/4) was seen in 97% of exams. Each rated one exam as moderate quality (grade 2). 95% received a majority image quality score of good/excellent by three physicians. Ostial PV measurements correlated moderate to excellently with CTA (ICCs range 0.52-0.86). No difference in SNR was observed between IR and SR. High quality PV CE-MRA is possible in under 4 min using iNAV bolus timing/motion correction and VD-CASPR.


Asunto(s)
Medios de Contraste , Interpretación de Imagen Asistida por Computador , Angiografía por Resonancia Magnética , Variaciones Dependientes del Observador , Compuestos Organometálicos , Valor Predictivo de las Pruebas , Venas Pulmonares , Humanos , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/cirugía , Venas Pulmonares/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Medios de Contraste/administración & dosificación , Compuestos Organometálicos/administración & dosificación , Anciano , Técnicas de Imagen Sincronizada Cardíacas , Fibrilación Atrial/cirugía , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/fisiopatología , Ablación por Catéter , Electrocardiografía
9.
Health Care Women Int ; : 1-14, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635371

RESUMEN

We explored how menarcheal experiences and attitudes toward menstruation of Mexican adolescents have changed in the last 20 years. Two questionnaires were applied to female adolescent students, and the results were compared with those obtained in 2002-3 when adolescents of the same ages were surveyed using the same questionnaires. Although some aspects of menstrual education have not changed, the secrecy surrounding menstruation has diminished. In contrast, the belief that menstruation is disabling and keeps women from their normal activities has increased. It is important that adolescents receive adequate preparation about psychosocial and physical aspects of the menstrual cycle.

10.
EJNMMI Phys ; 11(1): 36, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581561

RESUMEN

PURPOSE: A 2D image navigator (iNAV) based 3D whole-heart sequence has been used to perform MRI and PET non-rigid respiratory motion correction for hybrid PET/MRI. However, only the PET data acquired during the acquisition of the 3D whole-heart MRI is corrected for respiratory motion. This study introduces and evaluates an MRI-based respiratory motion correction method of the complete PET data. METHODS: Twelve oncology patients scheduled for an additional cardiac 18F-Fluorodeoxyglucose (18F-FDG) PET/MRI and 15 patients with coronary artery disease (CAD) scheduled for cardiac 18F-Choline (18F-FCH) PET/MRI were included. A 2D iNAV recorded the respiratory motion of the myocardium during the 3D whole-heart coronary MR angiography (CMRA) acquisition (~ 10 min). A respiratory belt was used to record the respiratory motion throughout the entire PET/MRI examination (~ 30-90 min). The simultaneously acquired iNAV and respiratory belt signal were used to divide the acquired PET data into 4 bins. The binning was then extended for the complete respiratory belt signal. Data acquired at each bin was reconstructed and combined using iNAV-based motion fields to create a respiratory motion-corrected PET image. Motion-corrected (MC) and non-motion-corrected (NMC) datasets were compared. Gating was also performed to correct cardiac motion. The SUVmax and TBRmax values were calculated for the myocardial wall or a vulnerable coronary plaque for the 18F-FDG and 18F-FCH datasets, respectively. RESULTS: A pair-wise comparison showed that the SUVmax and TBRmax values of the motion corrected (MC) datasets were significantly higher than those for the non-motion-corrected (NMC) datasets (8.2 ± 1.0 vs 7.5 ± 1.0, p < 0.01 and 1.9 ± 0.2 vs 1.2 ± 0.2, p < 0.01, respectively). In addition, the SUVmax and TBRmax of the motion corrected and gated (MC_G) reconstructions were also higher than that of the non-motion-corrected but gated (NMC_G) datasets, although for the TBRmax this difference was not statistically significant (9.6 ± 1.3 vs 9.1 ± 1.2, p = 0.02 and 2.6 ± 0.3 vs 2.4 ± 0.3, p = 0.16, respectively). The respiratory motion-correction did not lead to a change in the signal to noise ratio. CONCLUSION: The proposed respiratory motion correction method for hybrid PET/MRI improved the image quality of cardiovascular PET scans by increased SUVmax and TBRmax values while maintaining the signal-to-noise ratio. Trial registration METC162043 registered 01/03/2017.

11.
J Cardiovasc Magn Reson ; 26(1): 101039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38521391

RESUMEN

BACKGROUND: Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment and management of adult patients with congenital heart disease (CHD). However, conventional techniques for three-dimensional (3D) whole-heart acquisition involve long and unpredictable scan times and methods that accelerate scans via k-space undersampling often rely on long iterative reconstructions. Deep-learning-based reconstruction methods have recently attracted much interest due to their capacity to provide fast reconstructions while often outperforming existing state-of-the-art methods. In this study, we sought to adapt and validate a non-rigid motion-corrected model-based deep learning (MoCo-MoDL) reconstruction framework for 3D whole-heart MRI in a CHD patient cohort. METHODS: The previously proposed deep-learning reconstruction framework MoCo-MoDL, which incorporates a non-rigid motion-estimation network and a denoising regularization network within an unrolled iterative reconstruction, was trained in an end-to-end manner using 39 CHD patient datasets. Once trained, the framework was evaluated in eight CHD patient datasets acquired with seven-fold prospective undersampling. Reconstruction quality was compared with the state-of-the-art non-rigid motion-corrected patch-based low-rank reconstruction method (NR-PROST) and against reference images (acquired with three-or-four-fold undersampling and reconstructed with NR-PROST). RESULTS: Seven-fold undersampled scan times were 2.1 ± 0.3 minutes and reconstruction times were ∼30 seconds, approximately 240 times faster than an NR-PROST reconstruction. Image quality comparable to the reference images was achieved using the proposed MoCo-MoDL framework, with no statistically significant differences found in any of the assessed quantitative or qualitative image quality measures. Additionally, expert image quality scores indicated the MoCo-MoDL reconstructions were consistently of a higher quality than the NR-PROST reconstructions of the same data, with the differences in 12 of the 22 scores measured for individual vascular structures found to be statistically significant. CONCLUSION: The MoCo-MoDL framework was applied to an adult CHD patient cohort, achieving good quality 3D whole-heart images from ∼2-minute scans with reconstruction times of ∼30 seconds.


Asunto(s)
Aprendizaje Profundo , Cardiopatías Congénitas , Interpretación de Imagen Asistida por Computador , Valor Predictivo de las Pruebas , Humanos , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Reproducibilidad de los Resultados , Adulto , Masculino , Femenino , Adulto Joven , Imagenología Tridimensional , Factores de Tiempo , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética
12.
Eur Heart J Imaging Methods Pract ; 2(1): qyae004, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38370393

RESUMEN

Aims: Unstable atherosclerotic plaques have increased activity of myeloperoxidase (MPO). We examined whether molecular magnetic resonance imaging (MRI) of intraplaque MPO activity predicts future atherothrombosis in rabbits and correlates with ruptured human atheroma. Methods and results: Plaque MPO activity was assessed in vivo in rabbits (n = 12) using the MPO-gadolinium (Gd) probe at 8 and 12 weeks after induction of atherosclerosis and before pharmacological triggering of atherothrombosis. Excised plaques were used to confirm MPO activity by liquid chromatography-tandem mass spectrometry (LC-MSMS) and to determine MPO distribution by histology. MPO activity was higher in plaques that caused post-trigger atherothrombosis than plaques that did not. Among the in vivo MRI metrics, the plaques' R1 relaxation rate after administration of MPO-Gd was the best predictor of atherothrombosis. MPO activity measured in human carotid endarterectomy specimens (n = 30) by MPO-Gd-enhanced MRI was correlated with in vivo patient MRI and histological plaque phenotyping, as well as LC-MSMS. MPO-Gd retention measured as the change in R1 relaxation from baseline was significantly greater in histologic and MRI-graded American Heart Association (AHA) type VI than type III-V plaques. This association was confirmed by comparing AHA grade to MPO activity determined by LC-MSMS. Conclusion: We show that elevated intraplaque MPO activity detected by molecular MRI employing MPO-Gd predicts future atherothrombosis in a rabbit model and detects ruptured human atheroma, strengthening the translational potential of this approach to prospectively detect high-risk atherosclerosis.

13.
J Cardiovasc Magn Reson ; 26(1): 100008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38194762

RESUMEN

BACKGROUND: Three dimensional, whole-heart (3DWH) MRI is an established non-invasive imaging modality in patients with congenital heart disease (CHD) for the diagnosis of cardiovascular morphology and for clinical decision making. Current techniques utilise diaphragmatic navigation (dNAV) for respiratory motion correction and gating and are frequently limited by long acquisition times. This study proposes and evaluates the diagnostic performance of a respiratory gating-free framework, which considers respiratory image-based navigation (iNAV), and highly accelerated variable density Cartesian sampling in concert with non-rigid motion correction and low-rank patch-based denoising (iNAV-3DWH-PROST). The method is compared to the clinical dNAV-3DWH sequence in adult patients with CHD. METHODS: In this prospective single center study, adult patients with CHD who underwent the clinical dNAV-3DWH MRI were also scanned with the iNAV-3DWH-PROST. Diagnostic confidence (4-point Likert scale) and diagnostic accuracy for common cardiovascular lesions was assessed by three readers. Scan times and diagnostic confidence were compared using the Wilcoxon-signed rank test. Co-axial vascular dimensions at three anatomic landmarks were measured, and agreement between the research and the corresponding clinical sequence was assessed with Bland-Altman analysis. RESULTS: The study included 60 participants (mean age ± [SD]: 33 ± 14 years; 36 men). The mean acquisition time of iNAV-3DWH-PROST was significantly lower compared with the conventional clinical sequence (3.1 ± 0.9 min vs 13.9 ± 3.9 min, p < 0.0001). Diagnostic confidence was higher for the iNAV-3DWH-PROST sequence compared with the clinical sequence (3.9 ± 0.2 vs 3.4 ± 0.8, p < 0.001), however there was no significant difference in diagnostic accuracy. Narrow limits of agreement and mean bias less than 0.08 cm were found between the research and the clinical vascular measurements. CONCLUSIONS: The iNAV-3DWH-PROST framework provides efficient, high quality and robust 3D whole-heart imaging in significantly shorter scan time compared to the standard clinical sequence.


Asunto(s)
Cardiopatías Congénitas , Imagenología Tridimensional , Valor Predictivo de las Pruebas , Humanos , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Masculino , Adulto , Estudios Prospectivos , Femenino , Reproducibilidad de los Resultados , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Respiración
14.
Magn Reson Med ; 91(5): 1951-1964, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38181169

RESUMEN

PURPOSE: Simultaneous PET-MRI improves inflammatory cardiac disease diagnosis. However, challenges persist in respiratory motion and mis-registration between free-breathing 3D PET and 2D breath-held MR images. We propose a free-breathing non-rigid motion-compensated 3D T2 -mapping sequence enabling whole-heart myocardial tissue characterization in a hybrid 3T PET-MR system and provides non-rigid respiratory motion fields to correct also simultaneously acquired PET data. METHODS: Free-breathing 3D whole-heart T2 -mapping was implemented on a hybrid 3T PET-MRI system. Three datasets were acquired with different T2 -preparation modules (0, 28, 55 ms) using 3-fold undersampled variable-density Cartesian trajectory. Respiratory motion was estimated via virtual 3D image navigators, enabling multi-contrast non-rigid motion-corrected MR reconstruction. T2 -maps were computed using dictionary-matching. Approach was tested in phantom, 8 healthy subjects, 14 MR only and 2 PET-MR patients with suspected cardiac disease and compared with spin echo reference (phantom) and clinical 2D T2 -mapping (in-vivo). RESULTS: Phantom results show a high correlation (R2 = 0.996) between proposed approach and gold standard 2D T2 mapping. In-vivo 3D T2 -mapping average values in healthy subjects (39.0 ± 1.4 ms) and patients (healthy tissue) (39.1 ± 1.4 ms) agree with conventional 2D T2 -mapping (healthy = 38.6 ± 1.2 ms, patients = 40.3 ± 1.7 ms). Bland-Altman analysis reveals bias of 1.8 ms and 95% limits of agreement (LOA) of -2.4-6 ms for healthy subjects, and bias of 1.3 ms and 95% LOA of -1.9 to 4.6 ms for patients. CONCLUSION: Validated efficient 3D whole-heart T2 -mapping at hybrid 3T PET-MRI provides myocardial inflammation characterization and non-rigid respiratory motion fields for simultaneous PET data correction. Comparable T2 values were achieved with both 3D and 2D methods. Improved image quality was observed in the PET images after MR-based motion correction.


Asunto(s)
Miocarditis , Miocardio , Humanos , Imagen por Resonancia Magnética , Movimiento (Física) , Imagenología Tridimensional/métodos , Tomografía de Emisión de Positrones , Corazón/diagnóstico por imagen , Fantasmas de Imagen
15.
IEEE Trans Biomed Eng ; 71(3): 855-865, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37782583

RESUMEN

Cine cardiac magnetic resonance (CMR) imaging is considered the gold standard for cardiac function evaluation. However, cine CMR acquisition is inherently slow and in recent decades considerable effort has been put into accelerating scan times without compromising image quality or the accuracy of derived results. In this article, we present a fully-automated, quality-controlled integrated framework for reconstruction, segmentation and downstream analysis of undersampled cine CMR data. The framework produces high quality reconstructions and segmentations, leading to undersampling factors that are optimised on a scan-by-scan basis. This results in reduced scan times and automated analysis, enabling robust and accurate estimation of functional biomarkers. To demonstrate the feasibility of the proposed approach, we perform simulations of radial k-space acquisitions using in-vivo cine CMR data from 270 subjects from the UK Biobank (with synthetic phase) and in-vivo cine CMR data from 16 healthy subjects (with real phase). The results demonstrate that the optimal undersampling factor varies for different subjects by approximately 1 to 2 seconds per slice. We show that our method can produce quality-controlled images in a mean scan time reduced from 12 to 4 seconds per slice, and that image quality is sufficient to allow clinically relevant parameters to be automatically estimated to lie within 5% mean absolute difference.


Asunto(s)
Aprendizaje Profundo , Humanos , Imagen por Resonancia Cinemagnética/métodos , Corazón/diagnóstico por imagen
16.
Eur Radiol ; 34(4): 2689-2698, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37804340

RESUMEN

OBJECTIVES: Visualizing left atrial anatomy including the pulmonary veins (PVs) is important for planning the procedure of pulmonary vein isolation with ablation in patients with atrial fibrillation (AF). The aims of our study are to investigate the feasibility of the 3D whole-heart bright-blood and black-blood phase-sensitive (BOOST) inversion recovery sequence in patients with AF scheduled for ablation or electro-cardioversion, and to analyze the correlation between image quality and heart rate and rhythm of patients. METHODS: BOOST was performed for assessing PVs both with T2 preparation pre-pulse (T2prep) and magnetization transfer preparation (MTC) in 45 patients with paroxysmal or permanent AF scheduled for ablation or electro-cardioversion. Image quality analyses were performed by two independent observers. Qualitative assessment was made using the Likert scale; for quantitative analysis, signal to noise ratios (SNR) and contrast to noise ratios (CNR) were calculated for each PV. Heart rate and rhythm were analyzed based on standard 12-lead ECGs. RESULTS: All MTC-BOOST acquisitions achieved diagnostic quality in the PVs, while a significant proportion of T2prep-BOOST images were not suitable for assessing PVs. SNR and CNR values of the MTC-BOOST bright-blood images were higher if patients had sinus rhythm. We found a significant or nearly significant negative correlation between heart rate and the SNR and CNR values of MTC-BOOST bright-blood images. CONCLUSION: 3D whole-heart MTC-BOOST bright-blood imaging is suitable for visualizing the PVs in patients with AF, producing diagnostic image quality in 100% of cases. However, image quality was influenced by heart rate and rhythm. CLINICAL RELEVANCE STATEMENT: The novel 3D whole-heart BOOST CMR sequence needs no contrast administration and is performed during free-breathing; therefore, it is easy to use for a wide range of patients and is suitable for visualizing the PVs in patients with AF. KEY POINTS: • The applicability of the novel 3D whole-heart bright-blood and black-blood phase-sensitive sequence to pulmonary vein imaging in clinical practice is unknown. • Magnetization transfer-bright-blood and black-blood phase-sensitive imaging is suitable for visualizing the pulmonary veins in patients with atrial fibrillation with excellent or good image quality. • Bright-blood and black-blood phase-sensitive cardiac magnetic resonance sequence is easy to use for a wide range of patients as it needs no contrast administration and is performed during free-breathing.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Humanos , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Estudios de Factibilidad , Atrios Cardíacos/diagnóstico por imagen , Electrocardiografía , Imagen por Resonancia Magnética , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/cirugía , Ablación por Catéter/métodos
17.
J Cardiovasc Electrophysiol ; 35(2): 258-266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38065834

RESUMEN

BACKGROUND: Incomplete atrial lesions resulting in pulmonary vein-left atrium reconnection after pulmonary vein antrum isolation (PVAI), are related to atrial fibrillation (AF) recurrence. Unfortunately, during the PVAI procedure, fluoroscopy and electroanatomic mapping cannot accurately determine the location and size of the ablation lesions in the atrial wall and this can result in incomplete PVAI lesions (PVAI-L) after radiofrequency catheter ablation (RFCA). AIM: We seek to evaluate whether cardiac magnetic resonance (CMR), immediately after RFCA of AF, can identify PVAI-L by characterizing the left atrial tissue. METHODS: Ten patients (63.1 ± 5.7 years old, 80% male) receiving a RFCA for paroxysmal AF underwent a CMR before (<1 week) and after (<1 h) the PVAI. Two-dimensional dark-blood T2-weighted short tau inversion recovery (DB-STIR), Three-dimensional inversion-recovery prepared long inversion time (3D-TWILITE) and three-dimensional late gadolinium enhancement (3D-LGE) images were performed to visualize PVAI-L. RESULTS: The PVAI-L was visible in 10 patients (100%) using 3D-TWILITE and 3D-LGE. Conversely, On DB-STIR, the ablation core of the PAVI-L could not be identified because of a diffuse high signal of the atrial wall post-PVAI. Microvascular obstruction was identified in 7 (70%) patients using 3D-LGE. CONCLUSION: CMR can visualize PVAI-L immediately after the RFCA of AF even without the use of contrast agents. Future studies are needed to understand if the use of CMR for PVAI-L detection after RFCA can improve the results of ablation procedures.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Medios de Contraste , Resultado del Tratamiento , Gadolinio , Espectroscopía de Resonancia Magnética , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/cirugía
18.
J Cardiovasc Magn Reson ; 25(1): 80, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124106

RESUMEN

BACKGROUND: Quantification of three-dimensional (3D) cardiac anatomy is important for the evaluation of cardiovascular diseases. Changes in anatomy are indicative of remodeling processes as the heart tissue adapts to disease. Although robust segmentation methods exist for computed tomography angiography (CTA), few methods exist for whole-heart cardiovascular magnetic resonance angiograms (CMRA) which are more challenging due to variable contrast, lower signal to noise ratio and a limited amount of labeled data. METHODS: Two state-of-the-art unsupervised generative deep learning domain adaptation architectures, generative adversarial networks and variational auto-encoders, were applied to 3D whole heart segmentation of both conventional (n = 20) and high-resolution (n = 45) CMRA (target) images, given segmented CTA (source) images for training. An additional supervised loss function was implemented to improve performance given 10%, 20% and 30% segmented CMRA cases. A fully supervised nn-UNet trained on the given CMRA segmentations was used as the benchmark. RESULTS: The addition of a small number of segmented CMRA training cases substantially improved performance in both generative architectures in both standard and high-resolution datasets. Compared with the nn-UNet benchmark, the generative methods showed substantially better performance in the case of limited labelled cases. On the standard CMRA dataset, an average 12% (adversarial method) and 10% (variational method) improvement in Dice score was obtained. CONCLUSIONS: Unsupervised domain-adaptation methods for CMRA segmentation can be boosted by the addition of a small number of supervised target training cases. When only few labelled cases are available, semi-supervised generative modelling is superior to supervised methods.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Angiografía por Resonancia Magnética , Valor Predictivo de las Pruebas , Corazón , Procesamiento de Imagen Asistido por Computador
19.
Radiol Imaging Cancer ; 5(6): e230036, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37999629

RESUMEN

Purpose To evaluate the feasibility of liver MR fingerprinting (MRF) for quantitative characterization and diagnosis of focal liver lesions. Materials and Methods This single-site, prospective study included 89 participants (mean age, 62 years ± 15 [SD]; 45 women, 44 men) with various focal liver lesions who underwent MRI between October 2021 and August 2022. The participants underwent routine clinical MRI, non-contrast-enhanced liver MRF, and reference quantitative MRI with a 1.5-T MRI scanner. The bias and repeatability of the MRF measurements were assessed using linear regression, Bland-Altman plots, and coefficients of variation. The diagnostic capability of MRF-derived T1, T2, T2*, proton density fat fraction (PDFF), and a combination of these metrics to distinguish benign from malignant lesions was analyzed according to the area under the receiver operating characteristic curve (AUC). Results Liver MRF measurements showed moderate to high agreement with reference measurements (intraclass correlation = 0.94, 0.77, 0.45, and 0.61 for T1, T2, T2*, and PDFF, respectively), with underestimation of T2 values (mean bias in lesion = -0.5%, -29%, 5.8%, and -8.2% for T1, T2, T2*, and PDFF, respectively). The median coefficients of variation for repeatability of T1, T2, and T2* values were 2.5% (IQR, 3.6%), 3.1% (IQR, 5.6%), and 6.6% (IQR, 13.9%), respectively. After considering multicollinearity, a combination of MRF measurements showed a high diagnostic performance in differentiating benign from malignant lesions (AUC = 0.92 [95% CI: 0.86, 0.98]). Conclusion Liver MRF enabled the quantitative characterization of various focal liver lesions in a single breath-hold acquisition. Keywords: MR Imaging, Abdomen/GI, Liver, Imaging Sequences, Technical Aspects, Tissue Characterization, Technology Assessment, Diagnosis, Liver Lesions, MR Fingerprinting, Quantitative Characterization Supplemental material is available for this article. © RSNA, 2023.


Asunto(s)
Neoplasias Hepáticas , Imagen por Resonancia Magnética , Masculino , Humanos , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Abdomen , Protones , Neoplasias Hepáticas/diagnóstico por imagen
20.
J Cardiovasc Magn Reson ; 25(1): 52, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37779192

RESUMEN

BACKGROUND: Coronary magnetic resonance angiography (coronary MRA) is increasingly being considered as a clinically viable method to investigate coronary artery disease (CAD). Accurate determination of the trigger delay to place the acquisition window within the quiescent part of the cardiac cycle is critical for coronary MRA in order to reduce cardiac motion. This is currently reliant on operator-led decision making, which can negatively affect consistency of scan acquisition. Recently developed deep learning (DL) derived software may overcome these issues by automation of cardiac rest period detection. METHODS: Thirty individuals (female, n = 10) were investigated using a 0.9 mm isotropic image-navigator (iNAV)-based motion-corrected coronary MRA sequence. Each individual was scanned three times utilising different strategies for determination of the optimal trigger delay: (1) the DL software, (2) an experienced operator decision, and (3) a previously utilised formula for determining the trigger delay. Methodologies were compared using custom-made analysis software to assess visible coronary vessel length and coronary vessel sharpness for the entire vessel length and the first 4 cm of each vessel. RESULTS: There was no difference in image quality between any of the methodologies for determination of the optimal trigger delay, as assessed by visible coronary vessel length, coronary vessel sharpness for each entire vessel and vessel sharpness for the first 4 cm of the left mainstem, left anterior descending or right coronary arteries. However, vessel length of the left circumflex was slightly greater using the formula method. The time taken to calculate the trigger delay was significantly lower for the DL-method as compared to the operator-led approach (106 ± 38.0 s vs 168 ± 39.2 s, p < 0.01, 95% CI of difference 25.5-98.1 s). CONCLUSIONS: Deep learning-derived automated software can effectively and efficiently determine the optimal trigger delay for acquisition of coronary MRA and thus may simplify workflow and improve reproducibility.


Asunto(s)
Corazón , Angiografía por Resonancia Magnética , Humanos , Femenino , Angiografía por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Valor Predictivo de las Pruebas , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Angiografía Coronaria/métodos , Imagenología Tridimensional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA