Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064874

RESUMEN

Ambipolar organic light-emitting transistors (OLETs) are extremely appealing devices for applications from sensing to communication and display realization due to their inherent capability of coupling switching and light-emitting features. However, their limited external quantum efficiency (EQE) and brightness under ambipolar bias conditions hamper the progress of OLET technology. In this context, it was recently demonstrated in multi-stacked devices that the engineering of the interface between the topmost electron-transporting organic semiconductor (e-OS) and the emission layer (EML) is crucial in optimizing the recombination of the minority charges (i.e., electrons) and to enhance EQE and brightness. Here, we introduce a new light-emitting conjugated polar polymer (CPP) in a multi-stacked OLET to improve the electron injection from e-OS to EML and to study, simultaneously, electroluminescence-related processes such as exciton formation and quenching processes. Interestingly, we observed that the highly polar groups present in the conjugate polymer induced polarization-related relevant charge-trapping phenomena with consequent modulation of the entire electrostatic field distribution and unexpected optoelectronic features. In view of the extensive use of CPPs in OLETs, the use of multifunctional CPPs for probing photophysical processes at the functional interfaces in stacked devices may speed up the improvement of the light-emission properties in OLETs.

2.
ACS Appl Mater Interfaces ; 15(28): 33809-33818, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37403922

RESUMEN

Organic light-emitting transistors (OLETs) are multifunctional optoelectronic devices that combine in a single structure the advantages of organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). However, low charge mobility and high threshold voltage are critical hurdles to practical OLET implementation. This work reports on the improvements obtained by using polyurethane films as a dielectric layer material in place of the standard poly(methyl methacrylate) (PMMA) in OLET devices. It was found that polyurethane drastically reduces the number of traps in the device, thereby improving electrical and optoelectronic device parameters. In addition, a model was developed to rationalize an anomalous behavior at the pinch-off voltage. Our findings represent a step forward to overcome the limiting factors of OLETs that prevent their use in commercial electronics by providing a simple route for low-bias device operation.

3.
Adv Mater ; 35(26): e2208719, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932736

RESUMEN

Optical biosensors based on plasmonic sensing schemes combine high sensitivity and selectivity with label-free detection. However, the use of bulky optical components is still hampering the possibility of obtaining miniaturized systems required for analysis in real settings. Here, a fully miniaturized optical biosensor prototype based on plasmonic detection is demonstrated, which enables fast and multiplex sensing of analytes with high- and low molecular weight (80 000 and 582 Da) as quality and safety parameters for milk: a protein (lactoferrin) and an antibiotic (streptomycin). The optical sensor is based on the smart integration of: i) miniaturized organic optoelectronic devices used as light-emitting and light-sensing elements and ii) a functionalized nanostructured plasmonic grating for highly sensitive and specific localized surface plasmon resonance (SPR) detection. The sensor provides quantitative and linear response reaching a limit of detection of 10-4 refractive index units once it is calibrated by standard solutions. Analyte-specific and rapid (15 min long) immunoassay-based detection is demonstrated for both targets. By using a custom algorithm based on principal-component analysis, a linear dose-response curve is constructed which correlates with a limit of detection (LOD) as low as 3.7 µg mL-1 for lactoferrin, thus assessing that the miniaturized optical biosensor is well-aligned with the chosen reference benchtop SPR method.


Asunto(s)
Técnicas Biosensibles , Lactoferrina , Peso Molecular , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie , Límite de Detección
4.
ACS Appl Mater Interfaces ; 12(27): 30616-30626, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32519550

RESUMEN

Organic field-effect transistors (OFETs) are key enabling devices for plastic electronics technology, which has a potentially disruptive impact on a variety of application fields, such as health, safety, and communication. Despite the tremendous advancements in understanding the OFET working mechanisms and device performance, further insights into the complex correlation between the nature of the charge-injecting contacts and the electrical characteristics of devices are still necessary. Here, an in-depth study of the metal-organic interfaces that provides a direct correlation to the performance of OFET devices is reported. The combination of synchrotron X-ray spectroscopy, atomic force microscopy, electron microscopy, and theoretical simulations on two selected electron transport organic semiconductors with tailored chemical structures allows us to gain insights into the nature of the injecting contacts. This multiple analysis repeated at the different stages of contact formation provides a clear picture on the synergy between organic/metal interactions, interfacial morphology, and structural organization of the electrode. The simultaneous synchrotron X-ray experiments and electrical measurements of OFETs in operando uncovers how the nature of the charge-injecting contacts has a direct impact on the injection potential of OFETs.

5.
Nanomaterials (Basel) ; 10(3)2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32155993

RESUMEN

In the last decade, biochemical sensors have brought a disruptive breakthrough in analytical chemistry and microbiology due the advent of technologically advanced systems conceived to respond to specific applications. From the design of a multitude of different detection modalities, several classes of sensor have been developed over the years. However, to date they have been hardly used in point-of-care or in-field applications, where cost and portability are of primary concern. In the present review we report on the use of nanostructured organic and hybrid compounds in optoelectronic, electrochemical and plasmonic components as constituting elements of miniaturized and easy-to-integrate biochemical sensors. We show how the targeted design, synthesis and nanostructuring of organic and hybrid materials have enabled enormous progress not only in terms of modulation and optimization of the sensor capabilities and performance when used as active materials, but also in the architecture of the detection schemes when used as structural/packing components. With a particular focus on optoelectronic, chemical and plasmonic components for sensing, we highlight that the new concept of having highly-integrated architectures through a system-engineering approach may enable the full expression of the potential of the sensing systems in real-setting applications in terms of fast-response, high sensitivity and multiplexity at low-cost and ease of portability.

6.
ACS Appl Mater Interfaces ; 10(30): 25580-25588, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29984985

RESUMEN

Organic light-emitting transistors (OLETs) show the fascinating combination of electrical switching characteristics and light generation capability. However, to ensure an effective device operation, an efficient injection of charges into the emissive layer is required. The introduction of solution-processed conjugated polyelectrolyte (CPE) films at the emissive layer/electrode interface represents a promising strategy to improve the electron injection process by dipole formation. However, their use in optoelectronic devices also involves some limitations because of the ionic nature of CPEs. In this context, neutral conjugated polar polymers (CPPs) represent a valid alternative to CPEs because the conjugated backbones of CPPs are functionalized with polar nonionic side groups, thus avoiding ion-dependent drawbacks. By introducing a layer of polyfluorene-containing phosphonate groups underneath the metal electrodes, we here demonstrate a substantial improvement of the electron injection properties into the OLET-emissive layer and, accordingly, a more than 2-fold increased light power and a 5 times higher external quantum efficiency of p-type OLETs in comparison with reference devices without any interlayer. The great benefit of using a transparent glass substrate allowed to selectively investigate the morphological and photoluminescent characteristics of both CPE- and CPP-buried interlayers within complete OLETs by means of an optical scanning probe technique. This, together with a thorough optoelectronic characterization of the figures of merit of working light-emitting devices, allowed to disclose the origin of the improved optical performance of CPP-based devices as well as the operation mechanisms of the investigated interlayer in the corresponding OLETs.

7.
Beilstein J Org Chem ; 12: 1629-37, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27559416

RESUMEN

Two high bandgap benzodithiophene-benzotriazole-based polymers were synthesized via palladium-catalysed Stille coupling reaction. In order to compare the effect of the side chains on the opto-electronic and photovoltaic properties of the resulting polymers, the benzodithiophene monomers were substituted with either octylthienyl (PTzBDT-1) or dihexylthienyl (PTzBDT-2) as side groups, while the benzotriazole unit was maintained unaltered. The optical characterization, both in solution and thin-film, indicated that PTzBDT-1 has a red-shifted optical absorption compared to PTzBDT-2, likely due to a more planar conformation of the polymer backbone promoted by the lower content of alkyl side chains. The different aggregation in the solid state also affects the energetic properties of the polymers, resulting in a lower highest occupied molecular orbital (HOMO) for PTzBDT-1 with respect to PTzBDT-2. However, an unexpected behaviour is observed when the two polymers are used as a donor material, in combination with PC61BM as acceptor, in bulk heterojunction solar cells. Even though PTzBDT-1 showed favourable optical and electrochemical properties, the devices based on this polymer present a power conversion efficiency of 3.3%, considerably lower than the efficiency of 4.7% obtained for the analogous solar cells based on PTzBDT-2. The lower performance is presumably attributed to the limited solubility of the PTzBDT-1 in organic solvents resulting in enhanced aggregation and poor intermixing with the acceptor material in the active layer.

8.
ACS Appl Mater Interfaces ; 8(3): 1635-43, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26751271

RESUMEN

Photostability of organic photovoltaic devices represents a key requirement for the commercialization of this technology. In this field, ZnO is one of the most attractive materials employed as an electron transport layer, and the investigation of its photostability is of particular interest. Indeed, oxygen is known to chemisorb on ZnO and can be released upon UV illumination. Therefore, a deep analysis of the UV/oxygen effects on working devices is relevant for the industrial production where the coating processes take place in air and oxygen/ZnO contact cannot be avoided. Here we investigate the light-soaking stability of inverted organic solar cells in which four different solution-processed ZnO-based nanoparticles were used as electron transport layers: (i) pristine ZnO, (ii) 0.03 at %, (iii) 0.37 at %, and (iv) 0.8 at % aluminum-doped AZO nanoparticles. The degradation of solar cells under prolonged illumination (40 h under 1 sun), in which the ZnO/AZO layers were processed in air or inert atmosphere, is studied. We demonstrate that the presence of oxygen during the ZnO/AZO processing is crucial for the photostability of the resulting solar cell. While devices based on undoped ZnO were particularly affected by degradation, we found that using AZO nanoparticles the losses in performance, due to the presence of oxygen, were partially or totally prevented depending on the Al doping level.

9.
J Mater Chem B ; 4(17): 2921-2932, 2016 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262970

RESUMEN

We report the design, synthesis and structure-property investigation of a new perylene diimide material (PDI-Lys) bearing lysine end substituents. Water processed films of PDI-Lys were prepared and their self-assembly, morphology and electrical properties in both inert and air environments were theoretically and experimentally investigated. With the aim of evaluating the potential of PDI-Lys as a biocompatible and functional neural interface for organic bioelectronic applications, its electrochemical impedance as well as the adhesion and viability properties of primary neurons on the PDI-Lys films were studied. By combining theoretical calculations and electrical measurements we show that due to conversion between neutral and zwitterionic anions, the PDI-Lys film conductivity increased significantly upon passing from air to an inert atmosphere, reaching a maximum value of 6.3 S m-1. We also show that the PDI-Lys film allows neural cell adhesion and neuron differentiation and decreases up to 5 times the electrode/solution impedance in comparison to a naked gold electrode. The present study introduces an innovative, water processable conductive film usable in organic electronics and as a putative neural interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA