Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39078097

RESUMEN

In vivo glutamate sensing has provided valuable insight into the physiology and pathology of the brain. Electrochemical glutamate biosensors, constructed by cross-linking glutamate oxidase onto an electrode and oxidizing H2O2 as a proxy for glutamate, are the gold standard for in vivo glutamate measurements for many applications. While glutamate sensors have been employed ubiquitously for acute measurements, there are almost no reports of long-term, chronic glutamate sensing in vivo, despite demonstrations of glutamate sensors lasting for weeks in vitro. To address this, we utilized a platinum electrode with nanometer-scale roughness (nanoPt) to improve the glutamate sensors' sensitivity and longevity. NanoPt improved the GLU sensitivity by 67.4% and the sensors were stable in vitro for 3 weeks. In vivo, nanoPt glutamate sensors had a measurable signal above a control electrode on the same array for 7 days. We demonstrate the utility of the nanoPt sensors by studying the effect of traumatic brain injury on glutamate in the rat striatum with a flexible electrode array and report measurements of glutamate taken during the injury itself. We also show the flexibility of the nanoPt platform to be applied to other oxidase enzyme-based biosensors by measuring γ-aminobutyric acid in the porcine spinal cord. NanoPt is a simple, effective way to build high sensitivity, robust biosensors harnessing enzymes to detect neurotransmitters in vivo.

2.
Adv Healthc Mater ; : e2302362, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563704

RESUMEN

Cerebral neural electronics play a crucial role in neuroscience research with increasing translational applications such as brain-computer interfaces for sensory input and motor output restoration. While widely utilized for decades, the understanding of the cellular mechanisms underlying this technology remains limited. Although two-photon microscopy (TPM) has shown great promise in imaging superficial neural electrodes, its application to deep-penetrating electrodes is technically difficult. Here, a novel device integrating transparent microelectrode arrays with glass microprisms, enabling electrophysiology recording and stimulation alongside TPM imaging across all cortical layers in a vertical plane, is introduced. Tested in Thy1-GCaMP6 mice for over 4 months, the integrated device demonstrates the capability for multisite electrophysiological recording/stimulation and simultaneous TPM calcium imaging. As a proof of concept, the impact of microstimulation amplitude, frequency, and depth on neural activation patterns is investigated using the setup. With future improvements in material stability and single unit yield, this multimodal tool greatly expands integrated electrophysiology and optical imaging from the superficial brain to the entire cortical column, opening new avenues for neuroscience research and neurotechnology development.

3.
Micromachines (Basel) ; 15(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38399004

RESUMEN

Flexible multielectrode arrays with glassy carbon (GC) electrodes and metal interconnection (hybrid MEAs) have shown promising performance in multi-channel neurochemical sensing. A primary challenge faced by hybrid MEAs fabrication is the adhesion of the metal traces with the GC electrodes, as prolonged electrical and mechanical stimulation can lead to adhesion failure. Previous devices with GC electrodes and interconnects made of a homogeneous material (all GC) demonstrated exceptional electrochemical stability but required miniaturization for enhanced tissue integration and chronic electrochemical sensing. In this study, we used two different methods for the fabrication of all GC-MEAs on thin flexible substrates with miniaturized features. The first method, like that previously reported, involves a double pattern-transfer photolithographic process, including transfer-bonding on temporary polymeric support. The second method requires a double-etching process, which uses a 2 µm-thick low stress silicon nitride coating of the Si wafer as the bottom insulator layer for the MEAs, bypassing the pattern-transfer and demonstrating a novel technique with potential advantages. We confirmed the feasibility of the two fabrication processes by verifying the practical conductivity of 3 µm-wide 2 µm-thick GC traces, the GC microelectrode functionality, and their sensing capability for the detection of serotonin using fast scan cyclic voltammetry. Through the exchange and discussion of insights regarding the strengths and limitations of these microfabrication methods, our goal is to propel the advancement of GC-based MEAs for the next generation of neural interface devices.

4.
Biosens Bioelectron ; 230: 115242, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989659

RESUMEN

Chronic sampling of tonic serotonin (5-hydroxytryptamine, 5-HT) concentrations in the brain is critical for tracking neurological disease development and the time course of pharmacological treatments. Despite their value, in vivo chronic multi-site measurements of tonic 5-HT have not been reported. To fill this technological gap, we batch-fabricated implantable glassy carbon (GC) microelectrode arrays (MEAs) onto a flexible SU-8 substrate to provide an electrochemically stable and biocompatible device/tissue interface. To achieve detection of tonic 5-HT concentrations, we applied a poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) electrode coating and optimized a square wave voltammetry (SWV) waveform for selective 5-HT measurement. In vitro, the PEDOT/CNT-coated GC microelectrodes achieved high sensitivity to 5-HT, good fouling resistance, and excellent selectivity against the most common neurochemical interferents. In vivo, our PEDOT/CNT-coated GC MEAs successfully detected basal 5-HT concentrations at different locations within the CA2 region of the hippocampus of both anesthetized and awake mice. Furthermore, the PEDOT/CNT-coated MEAs were able to detect tonic 5-HT in the mouse hippocampus for one week after implantation. Histology reveals that the flexible GC MEA implants caused less tissue damage and reduced inflammatory response in the hippocampus compared to commercially available stiff silicon probes. To the best of our knowledge, this PEDOT/CNT-coated GC MEA is the first implantable, flexible sensor capable of chronic in vivo multi-site sensing of tonic 5-HT.


Asunto(s)
Técnicas Biosensibles , Serotonina , Ratones , Animales , Microelectrodos , Polímeros/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes
5.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711655

RESUMEN

Real-time multi-channel measurements of tonic serotonin (5-hydroxytryptamine, 5-HT) concentrations across different brain regions are of utmost importance to the understanding of 5-HT’s role in anxiety, depression, and impulse control disorders, which will improve the diagnosis and treatment of these neuropsychiatric illnesses. Chronic sampling of 5-HT is critical in tracking disease development as well as the time course of pharmacological treatments. Despite their value, in vivo chronic multi-site measurements of 5-HT have not been reported. To fill this technological gap, we batch fabricated implantable glassy carbon (GC) microelectrode arrays (MEAs) on a flexible SU-8 substrate to provide an electrochemically stable and biocompatible device/tissue interface. Then, to achieve multi-site detection of tonic 5-HT concentrations, we incorporated the poly(3,4-ethylenedioxythiophene)/functionalized carbon nanotube (PEDOT/CNT) coating on the GC microelectrodes in combination with a new square wave voltammetry (SWV) approach, optimized for selective 5-HT measurement. In vitro , the PEDOT/CNT coated GC microelectrodes achieved high sensitivity towards 5-HT, good fouling resistance in the presence of 5-HT, and excellent selectivity towards the most common neurochemical interferents. In vivo , our PEDOT/CNT-coated GC MEAs were able to successfully detect basal 5-HT concentrations at different locations of the CA2 hippocampal region of mice in both anesthetized and awake head-fixed conditions. Furthermore, the implanted PEDOT/CNT-coated MEA achieved stable detection of tonic 5-HT concentrations for one week. Finally, histology data in the hippocampus shows reduced tissue damage and inflammatory responses compared to stiff silicon probes. To the best of our knowledge, this PEDOT/CNT-coated GC MEA is the first implantable flexible multisite sensor capable of chronic in vivo multi-site sensing of tonic 5-HT. This implantable MEA can be custom-designed according to specific brain region of interests and research questions, with the potential to combine electrophysiology recording and multiple analyte sensing to maximize our understanding of neurochemistry. Highlights: PEDOT/CNT-coated GC microelectrodes enabled sensitive and selective tonic detection of serotonin (5-HT) using a new square wave voltammetry (SWV) approach PEDOT/CNT-coated GC MEAs achieved multi-site in vivo 5-HT tonic detection for one week. Flexible MEAs lead to reduced tissue damage and inflammation compared to stiff silicon probes.

6.
Biosensors (Basel) ; 12(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35884343

RESUMEN

Dopamine (DA) plays a central role in the modulation of various physiological brain functions, including learning, motivation, reward, and movement control. The DA dynamic occurs over multiple timescales, including fast phasic release, as a result of neuronal firing and slow tonic release, which regulates the phasic firing. Real-time measurements of tonic and phasic DA concentrations in the living brain can shed light on the mechanism of DA dynamics underlying behavioral and psychiatric disorders and on the action of pharmacological treatments targeting DA. Current state-of-the-art in vivo DA detection technologies are limited in either spatial or temporal resolution, channel count, longitudinal stability, and ability to measure both phasic and tonic dynamics. We present here an implantable glassy carbon (GC) multielectrode array on a SU-8 flexible substrate for integrated multichannel phasic and tonic measurements of DA concentrations. The GC MEA demonstrated in vivo multichannel fast-scan cyclic voltammetry (FSCV) detection of electrically stimulated phasic DA release simultaneously at different locations of the mouse dorsal striatum. Tonic DA measurement was enabled by coating GC electrodes with poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) and using optimized square-wave voltammetry (SWV). Implanted PEDOT/CNT-coated MEAs achieved stable detection of tonic DA concentrations for up to 3 weeks in the mouse dorsal striatum. This is the first demonstration of implantable flexible MEA capable of multisite electrochemical sensing of both tonic and phasic DA dynamics in vivo with chronic stability.


Asunto(s)
Dopamina , Nanotubos de Carbono , Animales , Encéfalo , Cuerpo Estriado , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA