Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 509
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Materials (Basel) ; 17(20)2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39459830

RESUMEN

Three-dimensional printed concrete (3DPC) is increasingly recognized in the construction industry for its high design flexibility and the elimination of conventional formwork. However, weak interlayer adhesion remains a significant challenge. The potential of recycled polyethylene terephthalate (PET) fibers for reinforcing 3DPC is being explored, driven by their environmental sustainability and economic advantages. However, there is an inadequate interfacial adhesion between these recycled fibers and the 3DPC matrix. This study investigated the use of dopamine modification to address this issue and enhance the interlayer adhesion of fiber-reinforced 3DPC. Recycled PET fibers were surface-modified using dopamine treatment, forming a polydopamine (PDA) film that improved surface roughness and hydrophilicity. Both unmodified and modified fibers were incorporated into 3DPC at various volume fractions (0.1%, 0.3%, 0.5%). The effects on interlayer adhesion strength, compressive strength, and flexural strength were systematically evaluated and compared. The results showed that the inclusion of 0.3 vol% dopamine-modified fibers resulted in a 22.5% increase in interlayer adhesion strength compared to the control group, and a 14.8% improvement over unmodified fibers at the same content. Additionally, the compressive strength and flexural strength of 3DPC with 0.3 vol% MPET fibers increased by 22.5% and 27.6%, respectively, compared to the control group. Microstructural analysis using SEM and XRD revealed that the dopamine modification significantly improved the interfacial adhesion between fibers and the concrete matrix, explaining the superior performance of modified fibers. This study demonstrates that recycled PET fibers modified with dopamine can effectively enhance the interlayer adhesion of 3DPC. The findings affirm that surface modification techniques can significantly elevate the utility of recycled PET fibers in 3DPC, contributing to the sustainable advancement of construction materials.

2.
JCI Insight ; 9(21)2024 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-39352758

RESUMEN

Recent studies have identified multiple genetic variants of SEL1L-HRD1 endoplasmic reticulum-associated degradation (ERAD) in humans with neurodevelopmental disorders and locomotor dysfunctions, including ataxia. However, the relevance and importance of SEL1L-HRD1 ERAD in the pathogenesis of ataxia remain unexplored. Here, we showed that SEL1L deficiency in Purkinje cells leads to early-onset progressive cerebellar ataxia with progressive loss of Purkinje cells with age. Mice with Purkinje cell-specific deletion of SEL1L (Sel1LPcp2Cre) exhibited motor dysfunction beginning around 9 weeks of age. Transmission electron microscopy analysis revealed dilated ER and fragmented nuclei in Purkinje cells of adult Sel1LPcp2Cre mice, indicative of altered ER homeostasis and cell death. Finally, loss of Purkinje cells was associated with a secondary neurodegeneration of granular cells, as well as robust activation of astrocytes and proliferation of microglia, in the cerebellums of Sel1LPcp2Cre mice. These data demonstrate the pathophysiological importance of SEL1L-HRD1 ERAD in Purkinje cells in the pathogenesis of cerebellar ataxia.


Asunto(s)
Ataxia Cerebelosa , Degradación Asociada con el Retículo Endoplásmico , Células de Purkinje , Ubiquitina-Proteína Ligasas , Animales , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Ataxia Cerebelosa/metabolismo , Ratones , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Cerebelo/patología , Cerebelo/metabolismo , Ratones Noqueados , Masculino , Humanos , Proteínas/genética , Proteínas/metabolismo , Péptidos y Proteínas de Señalización Intracelular
3.
Vet Sci ; 11(10)2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39453080

RESUMEN

The pervasive use of plastics in numerous industrial sectors has resulted in the circulation of microplastics across diverse ecosystems and food chains, giving rise to mounting concerns regarding their potential adverse impacts on biological systems and the environment. The objective of this experiment was to investigate the distinct effects of microplastic-polyvinyl chloride (PVC) exposure on the reproductive system, intestinal tissue structure, and intestinal microbial flora of both male and female mice. A total of 24 4-week-old Kunming mice were randomly assigned to one of four groups: male control group (CM), female control group (CF), male PVC test group (PVCM), and female PVC test group (PVCF) (n = 6). The findings revealed that in terms of the reproductive system, the PVCM group exhibited an impaired testicular structure with an irregular arrangement and a significant reduction in spermatogonia, spermatocytes, and spermatozoa within the seminiferous tubules (p < 0.01). The PVCF group exhibited a notable decrease in ovarian follicles (p < 0.01), accompanied by a reduction in uterus volume, fallopian tube volume, and muscle layer thickness, all of which also decreased significantly (p < 0.01). In comparison to the control groups, exposure to PVC resulted in a reduction in the width and height of the intestinal villi, accompanied by an increase in crypt depth. This led to a significant alteration in the ratio of villus height to crypt depth (V/C) (p < 0.01). Moreover, a reduction in microbial species diversity was observed within both the PVCM and PVCF groups; additionally, it was accompanied by contrasting changes in relative abundance and functional gene profiles among the major intestinal flora constituents. In summary, the findings indicate that PVC induces damage to both male and female mice reproductive and digestive systems, further exhibiting notable sex-dependent effects on mouse intestinal microflora composition, which correlates significantly with its impact on reproductive organs.

4.
Diabetes ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325584

RESUMEN

Translocational regulation of proinsulin biosynthesis in pancreatic ß-cells is unknown, although several studies have reported an important accessory role for the Translocon-Associated Protein complex to assist preproinsulin delivery into the endoplasmic reticulum via the heterotrimeric Sec61 translocon (comprised of α, ß, and γ subunits). The actual protein-conducting channel is the α-subunit encoded either by Sec61A1 or its paralog Sec61A2. Although the underlying channel selectivity for preproinsulin translocation is unknown, almost all studies of Sec61α to date have focused on Sec61α1. There is currently no evidence to suggest that this gene product plays a major role in proinsulin production, whereas genome-wide association studies indicate linkage of Sec61A2 with diabetes. Here, we report that evolutionary differences in mouse preproinsulin signal peptides affect proinsulin biosynthesis. Moreover, we find that although some preproinsulin translocation can proceed through Sec61α1, Sec61α2 has a greater impact on proinsulin biosynthesis in pancreatic ß-cells. Remarkably, Sec61α2-translocon deficiency exerts a significant inhibitory effect on the biosynthesis of preproinsulin itself, including a disproportionate increase of full-length nacent chain unreleased from ribosomes. This study not only reveals novel translocational regulation of proinsulin biosynthesis, but also provides a rationale for genetic evidence suggesting an important role of Sec61α2 in maintaining blood glucose homeostasis.

5.
Biomedicines ; 12(9)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39335583

RESUMEN

Daytime dysfunction, including symptoms like sleepiness, poor memory, and reduced responsiveness, is not well researched. It is crucial to develop animal models and study the biological mechanisms involved. We simulated sleep disorders through sleep deprivation, and stressful stimuli were used to establish daytime functional animal models. We used tests like the sodium pentobarbital sleep synergy test and the DSI telemetry system to measure sleep duration and structure. We also used tests like the Morris water maze, open field test, grip test, and baton twirling test to assess mental and physical fatigue. To assess the intrinsic biological mechanisms, we measured sleep-wake-related neurotransmitters and related receptor proteins, circadian rhythm-related proteins and cognition-related proteins in hypothalamus tissue, and oxidative stress, inflammatory factors, S100ß, and HPA axis-related indexes in serum. Multi-factor sleep deprivation resulted in the disruption of sleep-wakefulness structure, memory-cognitive function degradation, decreased grip coordination, and other manifestations of decreased energetic and physical strength. The intrinsic biological mechanisms were related to the disturbed expression of sleep-wake, circadian rhythm, memory-cognition-related proteins, as well as the significant elevation of inflammatory factors, oxidative stress, the HPA axis, and other related indicators. Intrinsically related biological mechanisms and reduced sirt1 expression can lead to disruption of circadian rhythms; resulting in disruption of their sleep-wake-related neurotransmitter content and receptor expression. Meanwhile, the reduced expression of sirt1 also resulted in reduced expression of synapse-associated proteins. This study prepared an animal model of daytime dysfunction by means of multi-factor sleep deprivation. With sirt1 as a core target, the relevant biological mechanisms of neurological disorders were modulated.

6.
Nat Commun ; 15(1): 8435, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39343970

RESUMEN

Endoplasmic reticulum (ER) homeostasis in the hypothalamus has been implicated in the pathogenesis of diet-induced obesity (DIO) and type 2 diabetes; however, the underlying molecular mechanism remain vague and debatable. Here we report that SEL1L-HRD1 protein complex of the highly conserved ER-associated protein degradation (ERAD) machinery in POMC-expressing neurons ameliorates diet-induced obesity and its associated complications, partly by regulating the turnover of the long isoform of Leptin receptors (LepRb). Loss of SEL1L in POMC-expressing neurons attenuates leptin signaling and predisposes mice to HFD-associated pathologies including fatty liver, glucose intolerance, insulin and leptin resistance. Mechanistically, nascent LepRb, both wildtype and disease-associated Cys604Ser variant, are misfolding prone and bona fide substrates of SEL1L-HRD1 ERAD. In the absence of SEL1L-HRD1 ERAD, LepRb are largely retained in the ER, in an ER stress-independent manner. This study uncovers an important role of SEL1L-HRD1 ERAD in the pathogenesis of central leptin resistance and leptin signaling.


Asunto(s)
Dieta Alta en Grasa , Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico , Leptina , Neuronas , Obesidad , Proopiomelanocortina , Receptores de Leptina , Transducción de Señal , Ubiquitina-Proteína Ligasas , Animales , Obesidad/metabolismo , Obesidad/genética , Obesidad/etiología , Obesidad/patología , Neuronas/metabolismo , Leptina/metabolismo , Receptores de Leptina/metabolismo , Receptores de Leptina/genética , Ratones , Proopiomelanocortina/metabolismo , Proopiomelanocortina/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Dieta Alta en Grasa/efectos adversos , Masculino , Retículo Endoplásmico/metabolismo , Hipotálamo/metabolismo , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL , Proteínas/metabolismo , Proteínas/genética , Ratones Noqueados , Humanos , Péptidos y Proteínas de Señalización Intracelular
7.
Artículo en Inglés | MEDLINE | ID: mdl-39231689

RESUMEN

BACKGROUND: Atrazine (ATR), a commonly used herbicide, is linked to dopaminergic neurotoxicity, which may cause symptoms resembling Parkinson's disease (PD). This study aims to reveal the molecular regulatory networks responsible for ATR exposure and its effects on dopaminergic neurotoxicity based on an integration strategy. METHODS: Our approach involved network toxicology, construction of protein-protein interaction (PPI) networks, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, as well as molecular docking techniques. Subsequently, we validated the predicted results in PC12 cells in vitro. RESULTS: An integrated analysis strategy indicating that 5 hub targets, including mitogen-activated protein kinase 3 (Mapk3), catalase (Cat), heme oxygenase 1 (Hmox1), tumor protein p53 (Tp53), and prostaglandin-endoperoxide synthase 2 (Ptgs2), may play a crucial role in ATR-induced dopaminergic injury. Molecular docking indicated that the 5 hub targets exhibited certain binding activity with ATR. Cell counting kit-8 (CCK8) results illustrated a dose-response relationship in PC12 cells. Real-time quantitative polymerase chain reaction (RT-qPCR) displayed notable changes in the expression of hub targets mRNA levels, with the exception of Mapk3. Western blotting results suggested that ATR treatment in PC12 cells resulted in an upregulation of the Cat, Hmox1, and p-Mapk3 protein expression levels while causing a downregulation in Tp53, Ptgs2, and Mapk3. CONCLUSION: Our findings indicated that 5 hub targets identified could play a vital role in ATR-induced dopaminergic neurotoxicity in PC12 cells. These results provide preliminary support for further investigation into the molecular mechanism of ATR-induced toxicity.


Asunto(s)
Atrazina , Neuronas Dopaminérgicas , Herbicidas , Simulación del Acoplamiento Molecular , Atrazina/toxicidad , Animales , Células PC12 , Ratas , Herbicidas/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Mapas de Interacción de Proteínas , Dopamina/metabolismo
8.
Int J Gen Med ; 17: 4025-4036, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290233

RESUMEN

Background: Immunosuppressive therapy (IST) with horse or rabbit anti-human thymocyte immunoglobulin (h-/r-ATG) and hematopoietic stem cell transplantation (HSCT) are two baseline treatments for severe aplastic anemia (SAA) and transfusion-dependent non-severe aplastic anemia (TD-NSAA) patients. Addition of thrombopoietin receptor agonists (TPO-RAs) to standard IST therapy (h-/r-ATG) has greatly improved the survival of SAA, whereas porcine anti-lymphocyte globulin (p-ALG) combined with TPO-RAs still had a matter of debate. Methods: We retrospectively compared the data of 48 AA patients in our center between 2020 and 2022, 23 AA patients received with p-ALG ± TPO-RAs, 25 AA patients underwent matched sibling donor (MSD-) or haploidentical (haplo-) HSCT. Results: For patients in the HSCT group, the ORR was 90.9% which was significantly higher than that in the IST±TPO-RAs group (45.5%, P = 0.001) at 3 months; moreover, patients who underwent HSCT achieved faster transfusion independence, better CR rate, shorter time of recovery normal blood routine, and the percentage of normal blood routine (all P < 0.05) compared with IST±TPO-RAs group. However, the ORR were similary at 6 months in the two groups (95.5% vs 81.8% P = 0.342), with a median follow up of 19.8 months (range, 0.3-38.2 months), the 2-year FFS and OS in the two cohorts has no different. Subgroup analysis further indicated that the 2-year FFS and OS were similar between IST+TPO-RAs and haplo-HSCT subgroups, as well as in IST+TPO-RAs and MSD-HSCT cohorts. Moreover, the first-time hospitalizations were much more expensive in the HSCT group than in the IST±TPO-RAs group (402 756 vs. 292 902 yuan, P = 0.002). Conclusion: P-ALG-based-IST±TPO-RAs is a good treatment option with similar FFS and OS compared to allo- HSCT for AA patients without the opportunity of HSCT.

9.
J Pain Res ; 17: 3047-3062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308995

RESUMEN

Now, the erector spinae plane block (ESPB) is widely used in various thoracolumbar surgeries. It has unique advantages: simple and convenient operation, low safety risks, and reduced opioid use. The ESPB is used in thoracic surgery, abdominal surgery, and spinal surgery. There are also relevant research reports on postoperative analgesia during general anesthesia surgery. This article searches the PubMed and Web of Science databases to find and screen relevant studies on ESPB since 2019 and retrospectively summarizes the current indications of ESPB. The methodological quality of the included studies was assessed using the Cochrane bias risk tool. The results showed that the current research on ESPB generally provides low-level clinical evidence. The complex anatomy of the erector spinae muscles is both responsible for its unique advantages and restricts its development. Few anatomical studies have clearly and completely demonstrated the diffusion relationship of local anesthetics among the anatomical structures of the erector spinal muscles. The uncontrollability of the diffusion plane prevents ESPB from being applied on a wider scale with a high level of evidence. To further clarify the scope of application of ESPB and achieve the best analgesic effect, in the future, we should focus on the unique anatomical course and distribution of the erector spinal muscles and their fascia and nerves. It is necessary to combine anatomical, imaging, and histological methods to obtain high-quality evidence to guide clinical application.

10.
Dalton Trans ; 53(37): 15608-15617, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39233653

RESUMEN

With an electron-deficient rigid planar structure and excellent π-π stacking ability, hexaazatriphenylene (HAT) and its derivatives are widely used as basic building blocks for constructing covalent organic frameworks (COFs), components of organic light-emitting diodes and solar cells, and electrode materials for lithium-ion batteries (LIBs). Here, a HAT derivative, hexaazatriphenylenehexacarbonitrile, is explored as an anode material for LIBs. The HAT anode exhibited high initial reversible capacities of 672 mA h g-1 at 100 mA g-1 and 550 mA h g-1 at 400 mA g-1 and stable cycling with a capacity of 503 mA h g-1 after 1000 cycles at 400 mA g-1 corresponding to a capacity retention of 91.5%. Furthermore, the lithium storage mechanism and the cause of the first irreversible capacity loss of the HAT anode were investigated by X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculations. We have carried out a series of analyses on the mechanism of initial capacity loss. This study provides new insight on initial capacity loss and provides valuable insights into the molecular design and the electrochemical properties of HAT-based anode materials.

11.
J Affect Disord ; 368: 741-748, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306005

RESUMEN

BACKGROUND: The primary objective of this study was to elucidate the relationship between the platelet/high-density lipoprotein cholesterol ratio (PHR) and the risk of depression in adults in the US. METHODS: We conducted a cross-sectional study using data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2016. Depression was assessed using the PHQ-9 questionnaire. Weighted multivariable logistic regression models and restricted cubic spline (RCS) models were used to study the relationship between PHR and the risk of depression. Subgroup and interaction analyses were performed to further understand these associations. RESULTS: A total of 21,454 participants were included in this study. After full adjustment, PHR was significantly positively correlated with depression (OR = 1.33, 95%CI: 1.03-1.73). When PHR was converted into a categorical variable based on quartiles (Q1-Q4), the highest quartile of PHR was associated with an increased risk of depression compared to the lowest reference group (OR = 1.22, 95%CI: 1.01-1.48). There was a linear dose-response relationship between PHR and the risk of depression (P-non-linear = 0.8038). The association remained significant in several subgroup analyses. However, the interaction test showed that none of the stratified variables were significant (all P for interaction >0.05). LIMITATION: Using self-assessment scales and inability to assess causality. CONCLUSION: This population-based cross-sectional study elucidated that PHR is significantly associated with an increased prevalence of depression in adults in the US.

12.
13.
Gene ; 930: 148842, 2024 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-39134100

RESUMEN

BACKGROUND: Early detection and treatment of colorectal cancer (CRC) is crucial for improving patient survival rates. This study aims to identify signature molecules associated with CRC, which can serve as valuable indicators for clinical hematological screening. METHOD: We have systematically searched the Human Protein Atlas database and the relevant literature for blood protein-coding genes. The CRC dataset from TCGA was used to compare the acquired genes and identify differentially expressed molecules (DEMs). Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify modules of co-expressed molecules and key molecules within the DEMs. Signature molecules of CRC were then identified from the key molecules using machine learning. These findings were further validated in clinical samples. Finally, Logistic regression was used to create a predictive model that calculated the likelihood of CRC in both healthy individuals and CRC patients. We evaluated the model's sensitivity and specificity using the ROC curve. RESULT: By utilizing the CRC dataset, WGCNA analysis, and machine learning, we successfully identified seven signature molecules associated with CRC from 1478 blood protein-coding genes. These markers include S100A11, INHBA, QSOX2, MET, TGFBI, VEGFA and CD44. Analyzing the CRC dataset showed its potential to effectively discriminate between CRC and normal individuals. The up-regulated expression of these markers suggests the existence of an immune evasion mechanism in CRC patients and is strongly correlated with poor prognosis. CONCLUSION: The combined detection of the seven signature molecules in CRC can significantly enhance diagnostic efficiency and serve as a novel index for hematological screening of CRC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Aprendizaje Automático , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/sangre , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Regulación hacia Arriba , Femenino , Masculino , Perfilación de la Expresión Génica/métodos , Pronóstico , Redes Reguladoras de Genes , Persona de Mediana Edad
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1295-1299, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39192434

RESUMEN

Exportin-1 (XPO1) is a major transporter for hundreds of proteins. Selinexor is the first generation XPO1 inhibitor. At present, selinexor has gained more attention in the application of multiple myeloma (MM). Meanwhile, the latest clinical trials have confirmed that whether it is a single agent or combined with other chemotherapy regimens, selinexor can also achieve good therapeutic effects in patients with leukemia and lymphoma. This review summarizes the results of preclinical studies and clinical trials of selinexor in treatment of non-MM hematological malignancies, aiming to explore how to choose single agent or in combination with other regimens as induction chemotherapy.


Asunto(s)
Neoplasias Hematológicas , Hidrazinas , Mieloma Múltiple , Triazoles , Humanos , Proteína Exportina 1/antagonistas & inhibidores , Neoplasias Hematológicas/tratamiento farmacológico , Hidrazinas/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Triazoles/uso terapéutico
15.
PLoS One ; 19(8): e0307651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39186800

RESUMEN

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and stands as the second principal contributor to cancer-related fatalities. Recently, emerging research has emphasized the role of pan apoptosis (PANoptosis) in tumor development and anti-tumor therapy. In the course of this investigation, we meticulously identified and conducted a correlation analysis between differentially expressed genes associated with PANoptosis in CRC (CPAN_DEGs) and the proportion of immune cells. Subsequently, we formulated a prognostic score based on the CPAN_DEGs. Further our analysis revealed a noteworthy reduction in UNC5D mRNA expression within HCT116, HT29 and SW480 cells, as validated by qRT-PCR assay. Furthermore, scrutinizing the TCGA database unveiled a distinctive trend wherein individuals with the low UNC5D expression exhibited significantly reduced overall survival compared to their counterparts with the high UNC5D levels. The drug susceptibility analysis of UNC5D was further performed, which showed that UNC5D was corassociated with the sensitivity of CRC to 6-Thioguanine. The outcomes of our investigation underscore the mechanisms by which PANoptosis influences immune dysregulation as well as prognostic outcome in CRC.


Asunto(s)
Neoplasias Colorrectales , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Biología Computacional/métodos , Pronóstico , Apoptosis/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica , Células HCT116
16.
iScience ; 27(8): 110496, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39100694

RESUMEN

Pancreatic cancer is highly lethal with limited effective treatments. This study explores the therapeutic effects of eupalinolide B (EB) from Eupatorium lindleyanum DC on pancreatic cancer cells. Through cellular functional assays, we observed that EB effectively inhibits cell viability, proliferation, migration, and invasion. In a xenograft mouse model, EB treatment resulted in reduced pancreatic cancer tumor growth and decreased expression of Ki-67. Mechanistically, EB induces apoptosis, elevates reactive oxygen species (ROS) levels, and disrupts copper homeostasis. RNA sequencing (RNA-seq) and gene set enrichment analysis (GSEA) identified copper ion binding pathways and potential involvement in cuproptosis. Furthermore, EB enhances the cytotoxic effects of elesclomol (ES), increasing ROS levels in a copper-dependent manner and exhibiting synergistic cytotoxicity. These findings suggest that EB, either alone or in combination with ES, represents a promising strategy for targeting metal ion dysregulation and inducing potential cuproptosis in pancreatic cancer, offering a potential improvement in therapeutic outcomes.

18.
19.
Front Oncol ; 14: 1347123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184041

RESUMEN

Vessel density within tumor tissues strongly correlates with tumor proliferation and serves as a critical marker for tumor grading. Recognition of vessel density by pathologists is subject to a strong inter-rater bias, thus limiting its prognostic value. There are many challenges in the task of object detection in pathological images, including complex image backgrounds, dense distribution of small targets, and insignificant differences between the features of the target to be detected and the image background. To address these problems and thus help physicians quantify blood vessels in pathology images, we propose Pathological Images-YOLO (PI-YOLO), an enhanced detection network based on YOLOv7. PI-YOLO incorporates the BiFormer attention mechanism, enhancing global feature extraction and accelerating processing for regions with subtle differences. Additionally, it introduces the CARAFE upsampling module, which optimizes feature utilization and information retention for small targets. Furthermore, the GSConv module improves the ELAN module, reducing model parameters and enhancing inference speed while preserving detection accuracy. Experimental results show that our proposed PI-YOLO network has higher detection accuracy compared to Faster-RCNN, SSD, RetinaNet, YOLOv5 network, and the latest YOLOv7 network, with a mAP value of 87.48%, which is 2.83% higher than the original model. We also validated the performance of this network on the ICPR 2012 mitotic dataset with an F1 value of 0.8678, outperforming other methods, demonstrating the advantages of our network in the task of target detection in complex pathology images.

20.
Mol Med Rep ; 30(3)2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38994764

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive form of cancer with a low survival rate. A successful treatment strategy should not be limited to targeting cancer cells alone, but should adopt a more comprehensive approach, taking into account other influential factors. These include the extracellular matrix (ECM) and immune microenvironment, both of which are integral components of the tumor microenvironment. The present review describes the roles of pancreatic stellate cells, differentiated cancer­associated fibroblasts and the interleukin family, either independently or in combination, in the progression of precursor lesions in pancreatic intraepithelial neoplasia and PDAC. These elements contribute to ECM deposition and immunosuppression in PDAC. Therapeutic strategies that integrate interleukin and/or stromal blockade for PDAC immunomodulation and fibrogenesis have yielded inconsistent results. A deeper comprehension of the intricate interplay between fibrosis, and immune responses could pave the way for more effective treatment targets, by elucidating the mechanisms and causes of ECM fibrosis during PDAC progression.


Asunto(s)
Carcinoma Ductal Pancreático , Fibrosis , Interleucinas , Neoplasias Pancreáticas , Células Estrelladas Pancreáticas , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Microambiente Tumoral/inmunología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Interleucinas/metabolismo , Interleucinas/inmunología , Animales , Matriz Extracelular/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA