Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Materials (Basel) ; 17(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893881

RESUMEN

Urea stands as a ubiquitous environmental contaminant. However, not only does urea oxidation reaction technology facilitate energy conversion, but it also significantly contributes to treating wastewater rich in urea. Furthermore, urea electrolysis has a significantly lower theoretical potential (0.37 V) compared to water electrolysis (1.23 V). As an electrochemical reaction, the catalytic efficacy of urea oxidation is largely contingent upon the catalyst employed. Among the plethora of urea oxidation electrocatalysts, nickel-based compounds emerge as the preeminent transition metal due to their cost-effectiveness and heightened activity in urea oxidation. Ni(OH)2 is endowed with manifold advantages, including structural versatility, facile synthesis, and stability in alkaline environments. This review delineates the recent advancements in Ni(OH)2 catalysts for electrocatalytic urea oxidation reaction, encapsulating pivotal research findings in morphology, dopant incorporation, defect engineering, and heterogeneous architectures. Additionally, we have proposed personal insights into the challenges encountered in the research on nickel hydroxide for urea oxidation, aiming to promote efficient urea conversion and facilitate its practical applications.

2.
RSC Adv ; 14(23): 16379-16388, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38774610

RESUMEN

An FeN4 single-atom catalyst (SAC) embedded in a graphene matrix is considered an oxygen reduction reaction (ORR) catalyst for its good activity and durability, and decoration on the Fe active site can further modulate the performance of the FeN4 SAC. In this work, the axial heteroatom (L = P, S and Cl)-decorated FeN4 SAC (FeN4L) and pure FeN4 were comparatively studied using density functional theory (DFT) calculations. It was found that the rate-determining step (RDS) in the ORR on pure FeN4 is the reduction of OH to H2O in the last step with an overpotential of 0.58 V. However, the RDS of the ORR for the axial heteroatom-decorated FeN4L is the reduction of O2 to OOH in the first step. The axial P and S heteroatom-decorated FeN4P and FeN4S exhibit lower activity than pure FeN4 since the overpotentials of the ORR on FeN4P and FeN4S are 1.02 V and 1.09 V, respectively. Meanwhile, FeN4Cl exhibits the best activity towards the ORR since it possesses the lowest overpotential (0.51 V). The main reason is that the axial heteroatom decoration alleviates the adsorption of all the species in the whole ORR, thus modulating the free energy in every elementary reaction step. A volcano relationship between the d band center and the ORR activity can be determined among the axial heteroatom-decorated FeN4L SACs. The d band center of the Fe atom in various FeN4L SACs follows the order of FeN4 > FeN4Cl > FeN4S > FeN4P, whereas the overpotential of the ORR on various catalysts follows the order of FeN4Cl > FeN4 > FeN4S ≈ FeN4P. ΔG(*OH) is a simple descriptor for the prediction of the ORR activity of various axial heteroatom-decorated FeN4L, although the RDS in the ORR is either the first step or the last step. This paper provides a guide to the design and selection of the ORR over SACs with different axial heteroatom decorations, contributing to the rational design of more powerful ORR electrocatalysts and achieving advances in electrochemical conversion and storage devices.

3.
J Phys Chem Lett ; 15(20): 5535-5542, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38752703

RESUMEN

In this work, La(FeCuMnMgTi)O3 HEO nanoparticles with a perovskite-type structure are synthesized and used in the electrocatalytic CO2 reduction reaction (CO2RR). The catalyst demonstrates high performance as an electrocatalyst for the CO2RR, with a Faradaic efficiency (FE) of 92.5% at a current density of 21.9 mA cm-2 under -0.75 V vs a saturated calomel electrode (SCE). Particularly, an FE above 54% is obtained for methyl isopropyl ketone (C5H10O, MIPK) at a partial current density of 16 mA cm-2, overcoming all previous works. Besides, the as-prepared HEO catalyst displays robust stability in the CO2RR. The excellent catalytic performance of La(FeCuMnMgTi)O3 is ascribed to the synergistic effect between the electronic effects associated with five cations occupying the high-entropy sublattice sites and the oxygen vacancies within the perovskite structure of the HEO. Finally, DFT calculations indicate that Cu plays a vital role in the catalytic activity of the La(FeCuMnMgTi)O3 HEO nanoparticles toward C2+ products.

4.
Adv Mater ; 36(25): e2400810, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38569213

RESUMEN

The catalytic activation of the Li-S reaction is fundamental to maximize the capacity and stability of Li-S batteries (LSBs). Current research on Li-S catalysts mainly focuses on optimizing the energy levels to promote adsorption and catalytic conversion, while frequently overlooking the electronic spin state influence on charge transfer and orbital interactions. Here, hollow NiS2/NiSe2 heterostructures encapsulated in a nitrogen-doped carbon matrix (NiS2/NiSe2@NC) are synthesized and used as a catalytic additive in sulfur cathodes. The NiS2/NiSe2 heterostructure promotes the spin splitting of the 3d orbital, driving the Ni3+ transformation from low to high spin. This high spin configuration raises the electronic energy level and activates the electronic state. This accelerates the charge transfer and optimizes the adsorption energy, lowering the reaction energy barrier of the polysulfides conversion. Benefiting from these characteristics, LSBs based on NiS2/NiSe2@NC/S cathodes exhibit high initial capacity (1458 mAh·g⁻1 at 0.1C), excellent rate capability (572 mAh·g⁻1 at 5C), and stable cycling with an average capacity decay rate of only 0.025% per cycle at 1C during 500 cycles. Even at high sulfur loadings (6.2 mg·cm⁻2), high initial capacities of 1173 mAh·g⁻1 (7.27 mAh·cm⁻2) are measured at 0.1C, and 1058 mAh·g⁻1 is retained after 300 cycles.

5.
Environ Pollut ; 347: 123634, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401638

RESUMEN

A low band gap and visible light-responsive heterogeneous Photo-Fenton catalyst of γ-Fe2O3/CQDs micron composite was prepared under the one-pot hydrothermal method. The Photo-Fenton degradation of γ-Fe2O3/CQDs towards dye solution of rhodamine B(RhB), methyl blue (MB), and methyl orange (MO) was studied comparatively with α-Fe2O3. The γ-Fe2O3/CQDs exhibited remarkable catalytic performance for various dyes and with a first-order rate (k) of 14 times higher than that of initial α-Fe2O3 with a low concentration of H2O2 of 0.049 mmol. L-1 and a wider pH range of 3.1-7.1. The microstructure of the compounds was observed by XRD, SEM, TEM, FT-IR, and XPS characterization results suggested that the γ-Fe2O3/CQDs nanocomposite was formed through the stable Fe-O-C bonds, thus, the band gap decreased, and it is more favorable for the distance of holes and electrons. The free radical trapping experiment and EPR analysis indicated that •OH and 1O2 were the major active species during the typical photo-Fenton reaction. What's more, the γ-Fe2O3/CQDs also exhibited good stability and magnetic properties. DFT conclusion shows that the mechanism of the potential determination step (PDS) on α-Fe2O3(220) is the cleavage of H2O2 with an energy barrier of only 0.08 eV, which is 0.54 eV lower than that of OH* on γ-Fe2O3(220). Thus it can be deemed that γ-Fe2O3/CQDs perform much higher catalytic activity for the dissociation of H2O2 than α-Fe2O3. This work gives a feasible and economical countermeasure of visible light Photo-Fenton dispose of dye wastewater with a recyclable magnetic γ-Fe2O3/CQDs micron catalyst.


Asunto(s)
Peróxido de Hidrógeno , Hierro , Hierro/química , Peróxido de Hidrógeno/química , Colorantes/química , Espectroscopía Infrarroja por Transformada de Fourier , Luz , Catálisis
6.
Small ; 20(22): e2309176, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38150625

RESUMEN

Metal nanoclusters providing maximized atomic surface exposure offer outstanding hydrogen evolution activities but their stability is compromised as they are prone to grow and agglomerate. Herein, a possibility of blocking metal ion diffusion at the core of cluster growth and aggregation to produce highly active Ru nanoclusters supported on an N, S co-doped carbon matrix (Ru/NSC) is demonstrated. To stabilize the nanocluster dispersion, Ru species are initially coordinated through multiple Ru─N bonds with N-rich 4'-(4-aminophenyl)-2,2:6',2''-terpyridine (TPY-NH2) ligands that are subsequently polymerized using a Schiff base. After the pyrolysis of the hybrid composite, highly dispersed ultrafine Ru nanoclusters with an average size of 1.55 nm are obtained. The optimized Ru/NSC displays minimal overpotentials and high turnover frequencies, as well as robust durability both in alkaline and acidic electrolytes. Besides, outstanding mass activities of 3.85 A mg-1 Ru at 50 mV, i.e., 16 fold higher than 20 wt.% Pt/C are reached. Density functional theory calculations rationalize the outstanding performance by revealing that the low d-band center of Ru/NSC allows the desorption of *H intermediates, thereby enhancing the alkaline HER activity. Overall, this work provides a feasible approach to engineering cost-effective and robust electrocatalysts based on carbon-supported transition metal nanoclusters for future energy technologies.

7.
ACS Appl Mater Interfaces ; 15(50): 58462-58475, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38052030

RESUMEN

Lithium-sulfur batteries are regarded as an advantageous option for meeting the growing demand for high-energy-density storage, but their commercialization relies on solving the current limitations of both sulfur cathodes and lithium metal anodes. In this scenario, the implementation of lithium sulfide (Li2S) cathodes compatible with alternative anode materials such as silicon has the potential to alleviate the safety concerns associated with lithium metal. In this direction, here, we report a sulfur cathode based on Li2S nanocrystals grown on a catalytic host consisting of CoFeP nanoparticles supported on tubular carbon nitride. Nanosized Li2S is incorporated into the host by a scalable liquid infiltration-evaporation method. Theoretical calculations and experimental results demonstrate that the CoFeP-CN composite can boost the polysulfide adsorption/conversion reaction kinetics and strongly reduce the initial overpotential activation barrier by stretching the Li-S bonds of Li2S. Besides, the ultrasmall size of the Li2S particles in the Li2S-CoFeP-CN composite cathode facilitates the initial activation. Overall, the Li2S-CoFeP-CN electrodes exhibit a low activation barrier of 2.56 V, a high initial capacity of 991 mA h gLi2S-1, and outstanding cyclability with a small fading rate of 0.029% per cycle over 800 cycles. Moreover, Si/Li2S full cells are assembled using the nanostructured Li2S-CoFeP-CN cathode and a prelithiated anode based on graphite-supported silicon nanowires. These Si/Li2S cells demonstrate high initial discharge capacities above 900 mA h gLi2S-1 and good cyclability with a capacity fading rate of 0.28% per cycle over 150 cycles.

8.
Adv Mater ; 35(39): e2303732, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37358064

RESUMEN

Ammonium-ion aqueous supercapacitors are raising notable attention owing to their cost, safety, and environmental advantages, but the development of optimized electrode materials for ammonium-ion storage still lacks behind expectations. To overcome current challenges, here, a sulfide-based composite electrode based on MoS2 and polyaniline (MoS2 @PANI) is proposed as an ammonium-ion host. The optimized composite possesses specific capacitances above 450 F g-1 at 1 A g-1 , and 86.3% capacitance retention after 5000 cycles in a three-electrode configuration. PANI not only contributes to the electrochemical performance but also plays a key role in defining the final MoS2 architecture. Symmetric supercapacitors assembled with such electrodes display energy densities above 60 Wh kg-1 at a power density of 725 W kg-1 . Compared with Li+ and K+ ions, the surface capacitive contribution in NH4 + -based devices is lower at every scan rate, which points to an effective generation/breaking of H-bonds as the mechanism controlling the rate of NH4 + insertion/de-insertion. This result is supported by density functional theory calculations, which also show that sulfur vacancies effectively enhance the NH4 + adsorption energy and improve the electrical conductivity of the whole composite. Overall, this work demonstrates the great potential of composite engineering in optimizing the performance of ammonium-ion insertion electrodes.

9.
Adv Sci (Weinh) ; 10(15): e2300841, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36950758

RESUMEN

There is an urgent need for cost-effective strategies to produce hydrogen from renewable net-zero carbon sources using renewable energies. In this context, the electrochemical hydrogen evolution reaction can be boosted by replacing the oxygen evolution reaction with the oxidation of small organic molecules, such as ethylene glycol (EG). EG is a particularly interesting organic liquid with two hydroxyl groups that can be transformed into a variety of C1 and C2 chemicals, depending on the catalyst and reaction conditions. Here, a catalyst is demonstrated for the selective EG oxidation reaction (EGOR) to formate on nickel selenide. The catalyst nanoparticle (NP) morphology and crystallographic phase are tuned to maximize its performance. The optimized NiS electrocatalyst requires just 1.395 V to drive a current density of 50 mA cm-2 in 1 m potassium hydroxide (KOH) and 1 m EG. A combination of in situ electrochemical infrared absorption spectroscopy (IRAS) to monitor the electrocatalytic process and ex situ analysis of the electrolyte composition shows the main EGOR product is formate, with a Faradaic efficiency above 80%. Additionally, C2 chemicals such as glycolate and oxalate are detected and quantified as minor products. Density functional theory (DFT) calculations of the reaction process show the glycol-to-oxalate pathway to be favored via the glycolate formation, where the CC bond is broken and further electro-oxidized to formate.

10.
ACS Nano ; 17(1): 825-836, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36562698

RESUMEN

The electrochemical oxygen evolution reaction (OER) plays a fundamental role in several energy technologies, which performance and cost-effectiveness are in large part related to the used OER electrocatalyst. Herein, we detail the synthesis of cobalt-iron oxide nanosheets containing controlled amounts of well-anchored SO42- anionic groups (CoFexOy-SO4). We use a cobalt-based zeolitic imidazolate framework (ZIF-67) as the structural template and a cobalt source and Mohr's salt ((NH4)2Fe(SO4)2·6H2O) as the source of iron and sulfate. When combining the ZIF-67 with ammonium iron sulfate, the protons produced by the ammonium ion hydrolysis (NH4+ + H2O = NH3·H2O + H+) etch the ZIF-67, dissociating its polyhedron structure, and form porous assemblies of two-dimensional nanostructures through a diffusion-controlled process. At the same time, iron ions partially replace cobalt within the structure, and SO42- ions are anchored on the material surface by exchange with organic ligands. As a result, ultrathin CoFexOy-SO4 nanosheets are obtained. The proposed synthetic procedure enables controlling the amount of Fe and SO4 ions and analyzing the effect of each element on the electrocatalytic activity. The optimized CoFexOy-SO4 material displays outstanding OER activity with a 10 mA cm-2 overpotential of 268 mV, a Tafel slope of 46.5 mV dec-1, and excellent stability during 62 h. This excellent performance is correlated to the material's structural and chemical parameters. The assembled nanosheet structure is characterized by a large electrochemically active surface area, a high density of reaction sites, and fast electron transportation. Meanwhile, the introduction of iron increases the electrical conductivity of the catalysts and provides fast reaction sites with optimum bond energy and spin state for the adsorption of OER intermediates. The presence of sulfate ions at the catalyst surface modifies the electronic energy level of active sites, regulates the adsorption of intermediates to reduce the OER overpotential, and promotes the surface charge transfer, which accelerates the formation of oxygenated intermediates. Overall, the present work details the synthesis of a high-efficiency OER electrocatalyst and demonstrates the introduction of nonmetallic anionic groups as an excellent strategy to promote electrocatalytic activity in energy conversion technologies.

11.
J Phys Chem Lett ; 13(45): 10550-10557, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36342770

RESUMEN

Understanding the electrode-water interface structure in acid and alkali is crucial to unveiling the underlying mechanism of pH-dependent hydrogen oxidation reaction (HOR) kinetics. In this work, we construct the explicit Pt(111)-H2O interface models in both acid and alkali to investigate the relationship between the HOR mechanism and electrode-electrolyte interface structure using ab initio molecular dynamics and density functional theory. We find that the interfacial water orientation in the outer Helmholtz layer (OHP) induced by the Pt-water interaction governs the pH-dependent HOR kinetics on Pt(111). In alkali, the strong Pt-interfacial water electrostatic interaction behaves as a narrow OHP, which increases the proportion of "H-down" interfacial water and leads to less adsorbed water entering the inner Helmholtz plane (IHP), decreasing the work function of Pt(111). Furthermore, the more "H-down" interfacial water stabilizes the Had adsorption, prevents Had desorption, and suppresses the Volmer step of HOR by forming the solvated [Had···H2O···H2O] complex. Our work provided a visualized molecular-level mechanism to understand the nature of pH-dependent HOR kinetics.

12.
ACS Appl Mater Interfaces ; 14(42): 48212-48219, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36239982

RESUMEN

High-entropy materials offer numerous advantages as catalysts, including a flexible composition to tune the catalytic activity and selectivity and a large variety of adsorption/reaction sites for multistep or multiple reactions. Herein, we report on the synthesis, properties, and electrocatalytic performance of an amorphous high-entropy boride based on abundant transition metals, CoFeNiMnZnB. This metal boride provides excellent performance toward the oxygen evolution reaction (OER), including a low overpotential of 261 mV at 10 mA cm-2, a reduced Tafel slope of 56.8 mV dec-1, and very high stability. The outstanding OER performance of CoFeNiMnZnB is attributed to the synergistic interactions between the different metals, the leaching of Zn ions, the generation of oxygen vacancies, and the in situ formation of an amorphous oxyhydroxide at the CoFeNiMnZnB surface during the OER.

13.
ACS Appl Mater Interfaces ; 14(37): 41924-41933, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36074387

RESUMEN

The development of cost-effective bifunctional catalysts for water electrolysis is both a crucial necessity and an exciting scientific challenge. Herein, a simple approach based on a metal-organic framework sacrificial template to preparing cobalt molybdenum nitride supported on nitrogen-doped carbon nanosheets is reported. The porous structure of produced composite enables fast reaction kinetics, enhanced stability, and high corrosion resistance in critical seawater conditions. The cobalt molybdenum nitride-based electrocatalyst is tested toward both oxygen evolution reaction and hydrogen evolution reaction half-reactions using the seawater electrolyte, providing excellent performances that are rationalized using density functional theory. Subsequently, the nitride composite is tested as a bifunctional catalyst for the overall splitting of KOH-treated seawater from the Mediterranean Sea. The assembled system requires overpotentials of just 1.70 V to achieve a current density of 100 mA cm-2 in 1 M KOH seawater and continuously works for over 62 h. This work demonstrates the potential of transition-metal nitrides for seawater splitting and represents a step forward toward the cost-effective implementation of this technology.

14.
Nanomaterials (Basel) ; 12(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35808074

RESUMEN

The catalytic conversion of CO2 to C2 products through the CO2 reduction reaction (CO2RR) offers the possibility of preparing carbon-based fuels and valuable chemicals in a sustainable way. Herein, various Fen and Co5 clusters are designed to screen out the good catalysts with reasonable stability, as well as high activity and selectivity for either C2H4 or CH3CH2OH generation through density functional theory (DFT) calculations. The binding energy and cohesive energy calculations show that both Fe5 and Co5 clusters can adsorb stably on the N-doped carbon (NC) with one metal atom anchored at the center of the defected hole via a classical MN4 structure. The proposed reaction pathway demonstrates that the Fe5-NC cluster has better activity than Co5-NC, since the carbon-carbon coupling reaction is the potential determining step (PDS), and the free energy change is 0.22 eV lower in the Fe5-NC cluster than that in Co5-NC. However, Co5-NC shows a better selectivity towards C2H4 since the hydrogenation of CH2CHO to CH3CHO becomes the PDS, and the free energy change is 1.08 eV, which is 0.07 eV higher than that in the C-C coupling step. The larger discrepancy of d band center and density of states (DOS) between the topmost Fe and sub-layer Fe may account for the lower free energy change in the C-C coupling reaction. Our theoretical insights propose an explicit indication for designing new catalysts based on the transition metal (TM) clusters supported on N-doped carbon for multi-hydrocarbon synthesis through systematically analyzing the stability of the metal clusters, the electronic structure of the critical intermediates and the energy profiles during the CO2RR.

15.
ACS Omega ; 6(22): 14648-14654, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34250329

RESUMEN

Developing efficient and low-cost urea oxidation reaction (UOR) catalysts is a promising but still challenging task for environment and energy conversion technologies such as wastewater remediation and urea electrolysis. In this work, NiO nanoparticles that incorporated graphene as the NiO@Graphene composite were constructed to study the UOR process in terms of density functional theory. The single-atom model, which differed from the previous heterojunction model, was employed for the adsorption/desorption of urea and CO2 in the alkaline media. As demonstrated from the calculated results, NiO@Graphene prefers to adsorb the hydroxyl group than urea in the initial stage due to the stronger adsorption energy of the hydroxyl group. After NiOOH@Graphene was formed in the alkaline electrolyte, it presents excellent desorption energy of CO2 in the rate-determining step. Electronic density difference and the d band center diagram further confirmed that the Ni(III) species is the most favorable site for urea oxidation while facilitating charge transfer between urea and NiO@Graphene. Moreover, graphene provides a large surface for the incorporation of NiO nanoparticles, enhancing the electron transfer between NiOOH and graphene and promoting the mass transport in the alkaline electrolyte. Notably, this work provides theoretical guidance for the electrochemical urea oxidation work.

16.
RSC Adv ; 11(8): 4472-4477, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424394

RESUMEN

2D nickel phthalocyanine based MOFs (NiPc-MOFs) with excellent conductivity were synthesized through a solvothermal approach. Benefiting from excellent conductivity and a large surface area, 2D NiPc-MOF nanosheets present excellent electrocatalytic activity for nitrite sensing, with an ultra-wide linear concentration from 0.01 mM to 11 500 mM and a low detection limit of 2.3 µM, better than most reported electrochemical nitrite sensors. Significantly, this work reports the synthesis of 2D conductive NiPc-MOFs and develops them as electrochemical biosensors for non-enzymatic nitrite determination for the first time.

17.
Sci Rep ; 7(1): 14771, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29116240

RESUMEN

The thermally dewetted metal nano-islands have been actively investigated as cost-effective SERS-active substrates with a large area, good reproducibility and repeatability via simple fabrication process. However, the correlation between the dewetting temperature of metal film and SERS intensity hasn't been systematically studied. In this work, taking Ag nano-islands (AgNIs) as an example, we reported a strategy to investigate the correlation between the dewetting temperature of metal film and SERS intensity. We described the morphology evolution of AgNIs on the SiO2 planar substrate in different temperatures and got the quantitative information in surface-limited diffusion process (SLDP) as a function of annealing temperature via classical mean-field nucleation theory. Those functions were further used in the simulation of electromagnetic field to obtain the correlation between the dewetting temperature of Ag film and theoretical analysis. In addition, Raman mapping was done on samples annealed at different temperatures, with R6G as an analyte, to accomplish the analysis of the correlation between the dewetting temperature of Ag film and SERS intensity, which is consistent with the theoretical analysis. For SLDP, we used the morphological characterization of five samples prepared by different annealing temperatures to successfully illustrate the change in SERS intensity with the temperature fluctuation, obtaining a small deviation between the experimental results and theoretic prediction.

18.
Sci Rep ; 6: 31404, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27528078

RESUMEN

Exploring the novel shape of Pt nanoparticles is one of the most useful ways to improve the electrocatalytic performance of Pt in fuel cells. In this work, the Pt nanopeanuts consisting of two nanospheres grown together have been fabricated through a two-step polyol method. The high resolution scanning electron microscope (SEM) images and energy dispersive x-ray (EDX) spectrum collected at adjacent part point out the Pt nanopeanut is apparently different from the two physical attached nanospheres. To understand the growth mechanism of this nanopeanut, the final products in different synthesis situations are studied. The results indicate the interesting morphology of Pt nanopeanuts mainly benefit from the chemical reagent (FeCl3) while the size and homogeneity are greatly affected by the temperature. Furthermore, the electrocatalytic activity of the Pt nanopeanuts has also been demonstrated here. Our two-step synthesis of Pt nanopeanuts not only enlarges the group of Pt nanoparticles, but also provides a beneficial strategy for the synthesis of novel metal nanoparticles.

19.
Angew Chem Int Ed Engl ; 55(4): 1340-4, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26663768

RESUMEN

The electrocatalytic performance of a spinel for the oxygen reduction reaction (ORR) can be significantly promoted by reversing its crystalline structure from the normal to the inverse. As the spinel structure reversed, the activation and cleavage of O-O bonds are accelerated owing to a dissimilarity effect of the distinct metal atoms co-occupying octahedral sites. The Co(II)Fe(III)Co(III)O4 spinel with the Fe and Co co-occupying inverse structure exhibits an excellent ORR activity, which even exceeds that of the state-of-the-art commercial Pt/C by 42 mV in alkaline medium.

20.
Sci Rep ; 5: 17542, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26639026

RESUMEN

An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS(2)) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses a 3D crumpled few-layered graphene network structure decorated with MoS(2) nanoparticles. Electrochemical characterization analysis reveals that the resulting hybrid material exhibits efficient electrocatalytic activity toward HER under acidic conditions with a low onset potential of 112 mV and a small Tafel slope of 44 mV per decade. The enhanced mechanism of electrocatalytic activity has been investigated in detail by controlling the elemental composition, electrical conductance and surface morphology of the 3D hybrid as well as Density Functional Theory (DFT) calculations. This demonstrates that the abundance of exposed active sulfur edge sites in the MoS(2) and nitrogen active functional moieties in N-RGO are synergistically responsible for the catalytic activity, whilst the distinguished and coherent interface in MoS(2)/N-RGO facilitates the electron transfer during electrocatalysis. Our study gives insights into the physical/chemical mechanism of enhanced HER performance in MoS(2)/N-RGO hybrids and illustrates how to design and construct a 3D hybrid to maximize the catalytic efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA