Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 704
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1425131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015290

RESUMEN

Accurate wheat ear counting is one of the key indicators for wheat phenotyping. Convolutional neural network (CNN) algorithms for counting wheat have evolved into sophisticated tools, however because of the limitations of sensory fields, CNN is unable to simulate global context information, which has an impact on counting performance. In this study, we present a hybrid attention network (CTHNet) for wheat ear counting from RGB images that combines local features and global context information. On the one hand, to extract multi-scale local features, a convolutional neural network is built using the Cross Stage Partial framework. On the other hand, to acquire better global context information, tokenized image patches from convolutional neural network feature maps are encoded as input sequences using Pyramid Pooling Transformer. Then, the feature fusion module merges the local features with the global context information to significantly enhance the feature representation. The Global Wheat Head Detection Dataset and Wheat Ear Detection Dataset are used to assess the proposed model. There were 3.40 and 5.21 average absolute errors, respectively. The performance of the proposed model was significantly better than previous studies.

2.
Anesth Analg ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38870069

RESUMEN

BACKGROUND: Increasing the temperature of intrathecal local anesthetics has been shown to increase the speed of onset and block height of spinal anesthesia. However, how this influences dose requirement has not been fully quantified. The aim of this study was to determine and compare the effective dose for anesthesia for cesarean delivery in 50% of patients (ED50) of intrathecal bupivacaine given at temperatures of 37 °C (body temperature) or 24 °C (room temperature). METHODS: Eighty healthy parturients having elective cesarean delivery under combined spinal-epidural anesthesia were randomly assigned to receive intrathecal hyperbaric bupivacaine stored at 37 °C (body temperature group) or 24 °C (room temperature group). The first subject in each group received a bupivacaine dose of 10 mg. The dose for each subsequent subject in each group was varied with an increment or decrement of 1 mg based on the response (effective or noneffective) of the previous subject. Patients for whom the dose was noneffective received epidural supplementation after data collection with lidocaine 2% as required until anesthesia was sufficient for surgery. Values for ED50 were calculated using modified up-down sequential analysis with probit analysis applied as a backup sensitivity analysis. These values were compared and the relative mean potency was calculated. RESULTS: The ED50 (mean [95% confidence interval, CI]) of intrathecal hyperbaric bupivacaine was lower in the body temperature group (6.7 [5.7-7.6] mg) compared with the room temperature group (8.1 [7.7-8.6] mg) (P < .05). The relative potency ratio for intrathecal bupivacaine for the room temperature group versus the body temperature group was 0.84 (95% CI, 0.77-0.93). CONCLUSIONS: Warming hyperbaric bupivacaine to body temperature reduced the dose requirement for spinal anesthesia for cesarean delivery by approximately 16% (95% CI, 7%-23%).

3.
Foods ; 13(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38890986

RESUMEN

Sulfites play imperative roles in food crops and food products, serving as sulfur nutrients for food crops and as food additives in various foods. It is necessary to develop an effective method for the on-site quantification of sulfites in food samples. Here, 7-(diethylamino) quinoline is used as a fluorescent group and electron donor, alongside the pyridinium salt group as an electron acceptor and the C=C bond as the sulfite-specific recognition group. We present a novel fluorescent sensor based on a mechanism that modulates the efficiency of intramolecular charge transfer (ICT), CY, for on-site quantitative measurement of sulfite in food. The fluorescent sensor itself exhibited fluorescence in the near-infrared light (NIR) region, effectively minimizing the interference of background fluorescence in food samples. Upon exposure to sulfite, the sensor CY displayed a ratiometric fluorescence response (I447/I692) with a high sensitivity (LOD = 0.061 µM), enabling accurate quantitative measurements in complex food environments. Moreover, sensor CY also displayed a colorimetric response to sulfite, making sensor CY measure sulfite in both fluorescence and colorimetric dual-signal modes. Sensor CY has been utilized for quantitatively measuring sulfite in red wine and sugar with recoveries between 99.65% and 101.90%, and the RSD was below 4.0%. The sulfite concentrations in live cells and zebrafish were also monitored via fluorescence imaging. Moreover, the sulfite assimilated by lettuce leaves was monitored, and the results demonstrated that excessive sulfite in leaf tissue could lead to leaf tissue damage. In addition, the sulfate-transformed sulfite in lettuce stem tissue was tracked, providing valuable insights for evaluating sulfur nutrients in food crops. More importantly, to accomplish the on-site quantitative measurement of sulfite in food samples, a portable sensing system was prepared. Sensor CY and the portable sensing system were successfully used for the on-site quantitative measurement of sulfite in food.

4.
Anal Chem ; 96(25): 10391-10398, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38844882

RESUMEN

DNA-templated silver nanoclusters (AgNCs-DNA) can be synthesized via a one-pot method bypassing the tedious process of biomolecular labeling. Appending an aptamer to DNA templates results in dual-functionalized DNA strands that can be utilized for synthesizing aptamer-modified AgNCs, thereby enabling the development of label-free fluorescence aptasensors. However, a major challenge lies in the necessity to redesign the dual-functionalized DNA strand for each specific target, thus increasing the complexity and hindering widespread application of these aptasensors. To overcome this challenge, we designed six DNA strands (DNA1-DNA6) that incorporate the templates for AgNCs synthesis and A4-linker for further aptamer coupling. Among all the synthesized AgNCs-DNA samples, it was found that both AgNCs-DNA1 and AgNCs-DNA2 stood out for their excellent long-term stability. After capturing the T4-linker that connected with aptamer1 specific for aflatoxin B1 (AFB1), however, we found that only AgNCs-DNA1/aptamer1 maintained excellent long-term stability. This finding highlighted the potential of AgNCs-DNA1 as a versatile label-free fluorescence probe for the development of on-demand fluorescence aptasensors. To emphasize its benefits in aptasensing applications, we utilized AgNCs-DNA1/aptamer1 as the fluorescence probe and MoS2 nanosheets as the quencher to develop a FRET aptasensor for AFB1 detection. This aptasensor demonstrated remarkable sensitivity, enabling the detection of AFB1 within a wide concentration range of 0.03-120 ng/mL, with a limit of detection as low as 3.6 pg/mL (S/N = 3). The versatility of the aptasensor has been validated through the recognition of diverse targets, employing aptamer2 specific for ochratoxin A and aptamer3 specific for zearalenone, thereby showcasing its extensive applicability for on-demand detection. The universal applicability of this aptasensor holds great promise for future applications in diverse fields including food safety, environmental monitoring, and clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , ADN/química , Espectrometría de Fluorescencia , Moldes Genéticos , Plata/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos
5.
Pediatr Res ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937639

RESUMEN

BACKGROUND: The COVID-19 pandemic has prompted investigations into the association between this novel virus and allergic diseases, particularly asthma in children. However, the nature of this relationship remains poorly established. OBJECTIVE: This study aims to determine the clinical characteristics of children with allergic diseases who have contracted COVID-19. METHODS: A retrospective study was conducted at the Children's Hospital Affiliated to the Capital Institute of Pediatrics from January to March 2023. A total of 568 children aged 0-17 years diagnosed with asthma and COVID-19 infection were included. A comparative analysis of clinical characteristics was conducted between asthma and non-asthma groups. RESULTS: Asthmatic children with COVID-19 infection showed significantly higher frequencies of cough, wheezing, expectoration, and long-term symptoms compared to those without asthma (P < 0.05). Subgroups with poor therapy compliance exhibited elevated proportions of cough, chest tightness, and wheezing compared to good therapy compliance (P < 0.05). Multivariate logistic regression identified poor therapy compliance as a risk factor for long COVID in asthmatic children. CONCLUSION: Children with asthma secondary to COVID-19 infection were more prone to developing coughs, expectoration, and wheezing. Poor therapy compliance emerged as a significant risk factor for long COVID-19 in these individuals. IMPACT: Asthmatic children with COVID-19 infection showed significantly higher frequencies of cough, wheezing, expectoration. Poor therapy compliance was the risk factor for long COVID in asthmatic children. This article supplements the effects of different therapeutic drugs on the condition of children with asthma after infection with COVID-19 as well as the possible risk factors for the long COVID. The results of our study have important implications for public health policy makers and healthcare professionals. To understand the impact of COVID-19 on children with asthma will help guide appropriate management strategies and ensure access to necessary healthcare resources.

6.
Talanta ; 278: 126450, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908138

RESUMEN

In response to the pressing need for highly efficient simultaneous detection of multiple mycotoxins, which are often found co-occurring in food raw materials and feed, an MXene-based electrochemical aptasensor array (MBEAA) was developed. This aptasensor array utilizes high-specificity aptamers as recognition elements, enabling the capture of electrical signal changes in the presence of target mycotoxins. Based on this platform, a multi-channel portable electrochemical device, enabling rapid, cost-effective, and simultaneous detection of aflatoxin B1 (AFB1), ochratoxin A (OTA), and zealenone (ZEN) was further developed. The developed system boasts a wide detection range of 1.0 × 10-1 to 10.0 ng mL-1, with remarkable performance characterized by ultra-low detection limits of 41.2 pg mL-1, 27.6 pg mL-1, and 33.0 pg mL-1 for AFB1, OTA, and ZEN, respectively. Successfully applied in corn samples, this method offers a portable, easy-to-operate, and cost-effective solution for simultaneous multi-mycotoxin detection. Moreover, the application of the self-developed detection system could be expanded for simultaneous detection of many different targets when their specific aptamers or antibodies were available.

8.
J Hazard Mater ; 474: 134789, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38843636

RESUMEN

Despite the great interest in the consequences of global change stressors on marine organisms, their interactive effects on cadmium (Cd) bioaccumulation/biotoxicity are very poorly explored, particularly in combination with the toxicokinetic model and molecular mechanism. According to the projections for 2100, this study investigated the impact of elevated pCO2 and increased temperature (isolated or joint) on Cd uptake dynamics and transcriptomic response in the marine copepod Tigriopus japonicus. Toxicokinetic results showed significantly higher Cd uptake in copepods under increased temperature and its combination with elevated pCO2 relative to the ambient condition, linking to enhanced Cd bioaccumulation. Transcriptome analysis revealed that, under increased temperature and its combination with elevated pCO2, up-regulated expression of Cd uptake-related genes but down-regulation of Cd exclusion-related genes might cause increased cellular Cd level, which not only activated detoxification and stress response but also induced oxidative stress and concomitant apoptosis, demonstrating aggravated Cd biotoxicity. However, these were less pronouncedly affected by elevated pCO2 exposure. Therefore, temperature seems to be a primary factor in increasing Cd accumulation and its toxicity in the future ocean. Our findings suggest that we should refocus the interactive effects between climate change stressors and Cd pollution, especially considering temperature as a dominant driver.


Asunto(s)
Cadmio , Copépodos , Contaminantes Químicos del Agua , Cadmio/toxicidad , Cadmio/farmacocinética , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/farmacocinética , Copépodos/efectos de los fármacos , Copépodos/metabolismo , Copépodos/genética , Dióxido de Carbono/toxicidad , Dióxido de Carbono/metabolismo , Toxicocinética , Transcriptoma/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Cambio Climático , Temperatura , Calor
9.
Int J Biol Macromol ; 275(Pt 1): 133340, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925195

RESUMEN

As the traditional aerogel has defects such as poor mechanical properties, complicated preparation process, high energy consumption and non-renewable, wood aerogel as a new generation of aerogel shows unique advantages. With a natural cellulose framework, wood aerogel is a novel nano-porous material exhibiting exceptional properties such as light weight, high porosity, large specific surface area, and low thermal conductivity. Furthermore, its adaptability to further functionalization enables versatile applications across diverse fields. Driven by the imperative for sustainable development, wood aerogel as a renewable and eco-friendly material, has garnered significant attention from researchers. This review introduces preparation methods of wood aerogel based on the top-down strategy and analyzes the factors influencing their key properties intending to obtain wood aerogels with desirable properties. Avenues for realizing its functionality are also explored, and research progress across various domains are surveyed, including oil-water separation, conductivity and energy storage, as well as photothermal conversion. Finally, potential challenges associated with wood aerogel exploitation and utilization are addressed, alongside discussions on future prospects and research directions. The results emphasize the broad research value and future prospects of wood aerogels, which are poised to drive high-value utilization of wood and foster the development of green multifunctional aerogels.

10.
Nat Ecol Evol ; 8(7): 1270-1284, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849504

RESUMEN

Microbial inoculation involves transplanting microorganisms from their natural habitat to new plants or soils to improve plant performance, and it is being increasingly used in agriculture and ecological restoration. However, microbial inoculants can invade and alter the composition of native microbial communities; thus, a comprehensive analysis is urgently needed to understand the overall impact of microbial inoculants on the biomass, diversity, structure and network complexity of native communities. Here we provide a meta-analysis of 335 studies revealing a positive effect of microbial inoculants on soil microbial biomass. This positive effect was weakened by environmental stress and enhanced by the use of fertilizers and native inoculants. Although microbial inoculants did not alter microbial diversity, they induced major changes in the structure and bacterial composition of soil microbial communities, reducing the complexity of bacterial networks and increasing network stability. Finally, higher initial levels of soil nutrients amplified the positive impact of microbial inoculants on fungal biomass, actinobacterial biomass, microbial biomass carbon and microbial biomass nitrogen. Together, our results highlight the positive effects of microbial inoculants on soil microbial biomass, emphasizing the benefits of native inoculants and the important regulatory roles of soil nutrient levels and environmental stress.


Asunto(s)
Biomasa , Microbiota , Microbiología del Suelo , Bacterias/clasificación , Biodiversidad , Inoculantes Agrícolas/fisiología , Suelo/química , Hongos/fisiología
11.
Chest ; 165(6): e163-e167, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38852972

RESUMEN

This novel report presents the first known case, to our knowledge, of a 16-year-old male patient who experienced intraventricular thrombosis and pulmonary embolism after a Nuss procedure for pectus excavatum, attributed to chronic bar displacement. Two years after the operation, the patient experienced post-exercise cough and hemoptysis, which led to his admission. Imaging revealed pulmonary embolism, thrombosis in the right ventricular outflow tract, and lung infiltrative lesions. We hypothesize that the chronic bar displacement led to its embedment in the right ventricle, resulting in thrombus formation, which subsequently contributed to partial pulmonary embolism. Surgery revealed the bars' intrusion into the right ventricle and lung. This case highlights the risk of severe complications from bar displacement in the Nuss procedure, which necessitates long-term follow-up evaluation, caution against strenuous activities after surgery, and use of thoracoscopic guidance during bar implantation and removal. It underscores the importance of vigilant evaluation for late-stage complications in patients with respiratory distress or thrombosis after a Nuss procedure.


Asunto(s)
Tórax en Embudo , Embolia Pulmonar , Trombosis , Humanos , Embolia Pulmonar/etiología , Embolia Pulmonar/diagnóstico , Masculino , Adolescente , Tórax en Embudo/cirugía , Trombosis/etiología , Trombosis/diagnóstico por imagen , Trombosis/diagnóstico , Ventrículos Cardíacos/diagnóstico por imagen , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/diagnóstico , Tomografía Computarizada por Rayos X
12.
Food Chem ; 457: 140190, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38924915

RESUMEN

An innovative aptasensor incorporating MoS2-modified bicolor quantum dots and a portable spectrometer, designed for the simultaneous detection of ochratoxin A (OTA) and aflatoxin B1 (AFB1) in corn was developed. Carbon dots and CdZnTe quantum dots were as nano-donors to label OTA and AFB1 aptamers, respectively. These labeled aptamers were subsequently attached to MoS2 receptors, enabling fluorescence resonance energy transfer (FRET). With targets, the labeled aptamers detached from the nano-donors, thereby disrupting the FRET process and resulting in fluorescence recovery. Furthermore, a portable dual-mode fluorescence detection system, complemented with customized python-based analysis software, was developed to facilitate rapid and convenient detection using this dual-color FRET aptasensor. The developed host program is connected to the spectrometer and transmits data to the cloud, enabling the device to have Internet of Things (IoT) characteristics. Connected to the cloud, this IoT-enabled device offers convenient and reliable fungal toxin detection for food safety.

13.
Adv Med Sci ; 69(2): 272-280, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815927

RESUMEN

PURPOSE: Epidural analgesia has emerged as a commonly used method for relieving labor pain. However, epidural-related maternal fever (ERMF) is characterized by a high occurrence rate and can have detrimental consequences for the well-being of both the mother and the fetus. This study aimed to investigate the functional role and underlying mechanism of dexmedetomidine (DEX) in ERMF. MATERIALS AND METHODS: Ropivacaine (ROP)-induced human umbilical vein endothelial cells (HUVECs) were treated with DEX and/or transfected with ALKBH5 or FUNDC1 overexpression plasmid. qPCR and Western blot were adopted for mitophagy and pyroptosis marker protein detection. Autophagosomes were observed through electron microscopy, Caspase-1/PI double-positive cells were determined using flow cytometry. Inflammation-related factors were quantified using ELISA. The N6-methyladenosine (m6A) modification of FUNDC1 mRNA was examined using methylated RNA immunoprecipitation (MeRIP) and the binding between ALKBH5 and FUNDC1 mRNA was confirmed by RNA immunoprecipitation (RIP). RESULTS: In ROP-induced HUVECs, there was a significant upregulation in ALKBH5 and FUNDC1, resulting in a notable increase in inflammation, pyroptosis, and mitophagy. The administration of DEX demonstrated the ability to alleviate ROP-induced pyroptosis and promote protective mitophagy. Interestingly, DEX treatment significantly reduced the interaction between ALKBH5 and FUNDC1 mRNA, while simultaneously increasing the m6A level of FUNDC1 mRNA in ROP-treated cells. Moreover, the overexpression of FUNDC1 partially reversed the effects of ALKBH5 overexpression on mitophagy and pyroptosis in HUVECs. CONCLUSIONS: DEX can promote mitophagy and inhibit pyroptosis through the ALKBH5/FUNDC1 axis in ERMF, indicating its potential as a therapeutic strategy for clinical ERMF treatment.

14.
Nature ; 630(8016): 484-492, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811729

RESUMEN

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Asunto(s)
Bacterias , Bacteriófagos , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Bacterias/virología , Bacterias/genética , Bacterias/inmunología , Bacteriófagos/genética , Bacteriófagos/inmunología , Chryseobacterium/genética , Chryseobacterium/inmunología , Chryseobacterium/virología , Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , División del ADN , Sitios Genéticos/genética , Modelos Moleculares , Dominios Proteicos
15.
Phys Med Biol ; 69(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38714191

RESUMEN

Objective.This study aims to address the limitations of traditional methods for calculating linear energy transfer (LET), a critical component in assessing relative biological effectiveness (RBE). Currently, Monte Carlo (MC) simulation, the gold-standard for accuracy, is resource-intensive and slow for dose optimization, while the speedier analytical approximation has compromised accuracy. Our objective was to prototype a deep-learning-based model for calculating dose-averaged LET (LETd) using patient anatomy and dose-to-water (DW) data, facilitating real-time biological dose evaluation and LET optimization within proton treatment planning systems.Approach. 275 4-field prostate proton Stereotactic Body Radiotherapy plans were analyzed, rendering a total of 1100 fields. Those were randomly split into 880, 110, and 110 fields for training, validation, and testing. A 3D Cascaded UNet model, along with data processing and inference pipelines, was developed to generate patient-specific LETddistributions from CT images and DW. The accuracy of the LETdof the test dataset was evaluated against MC-generated ground truth through voxel-based mean absolute error (MAE) and gamma analysis.Main results.The proposed model accurately inferred LETddistributions for each proton field in the test dataset. A single-field LETdcalculation took around 100 ms with trained models running on a NVidia A100 GPU. The selected model yielded an average MAE of 0.94 ± 0.14 MeV cm-1and a gamma passing rate of 97.4% ± 1.3% when applied to the test dataset, with the largest discrepancy at the edge of fields where the dose gradient was the largest and counting statistics was the lowest.Significance.This study demonstrates that deep-learning-based models can efficiently calculate LETdwith high accuracy as a fast-forward approach. The model shows great potential to be utilized for optimizing the RBE of proton treatment plans. Future efforts will focus on enhancing the model's performance and evaluating its adaptability to different clinical scenarios.


Asunto(s)
Aprendizaje Profundo , Transferencia Lineal de Energía , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Terapia de Protones/métodos , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Método de Montecarlo , Dosificación Radioterapéutica , Masculino
16.
Anal Chem ; 96(22): 9192-9199, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38758357

RESUMEN

Singlet oxygen (1O2) plays imperative roles in a variety of biotic or abiotic stresses in crops. The change of its concentration within a crop is closely related to the crop growth and development. Accordingly, there is an urgent need to develop an efficient analytical method for on-site quantitative detection of 1O2 in crops. Here, we judiciously constructed a novel ratiometric fluorescent probe, SX-2, for the detection of 1O2 in crops. Upon treating with 1O2, probe SX-2 displayed highly selective ratiometric fluorescence response, which is favorable for the quantitative detection of 1O2. Concurrently, the fluorescence solution color of probe SX-2 was varied, obviously from blue to yellow, indicating that the probe is beneficial for on-site detection by the naked eye. Sensing reaction mechanism studies showed that the 2,3-diphenyl imidazole group in SX-2 could function as a new selective recognition group for 1O2. Probe SX-2 was utilized for the detection of photoirradiation-induced 1O2 and endogenous 1O2 in living cells. The changes in the 1O2 level in zebrafish were also tracked by fluorescence imaging. In addition, the production of 1O2 in crop leaves under a light source of different wavelengths was studied. The results demonstrated more 1O2 were produced under a light source of 365 nm. Furthermore, to achieve on-site quantitative detection, a mobile fluorescence analysis device has been made. Probe SX-2 and mobile fluorescence analysis device were capable of on-site quantitative detecting of 1O2 in crops. The method developed herein will be convenient for the on-site quantitative measurement of 1O2 in distinct crops.


Asunto(s)
Productos Agrícolas , Colorantes Fluorescentes , Oxígeno Singlete , Pez Cebra , Colorantes Fluorescentes/química , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Productos Agrícolas/química , Productos Agrícolas/metabolismo , Animales , Imagen Óptica , Humanos
17.
Drug Des Devel Ther ; 18: 1459-1467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707613

RESUMEN

Background: Ondansetron reduces the median effective dose (ED50) of prophylactic phenylephrine to prevent spinal-induced hypotension (SIH) during cesarean delivery. However, the exact dose response of phenylephrine in combination with prophylactic ondansetron for preventing SIH is unknown. Therefore, this study aimed to determine the dose-response of phenylephrine to prevent SIH in cesarean delivery when 4 mg of ondansetron was used as a preventive method. Methods: A total of 80 parturients were enrolled and divided randomly into four groups (n = 20 in each group) who received either 0.2, 0.3, 0.4, or 0.5 µg/kg/min of prophylactic phenylephrine. Ten minutes before the initiation of spinal induction, 4 mg prophylactic ondansetron was administered. The effective dose of prophylactic phenylephrine was defined as the dose required to prevent hypotension after the period of intrathecal injection and up to neonatal delivery. The ED50 and ED90 of prophylactic phenylephrine and 95% confidence intervals (95% CI) were calculated using probit analysis. Results: The ED50 and ED90 for prophylactic phenylephrine to prevent SIH were 0.25 (95% CI, 0.15 to 0.30), and 0.45 (95% CI, 0.39 to 0.59) µg/kg/min, respectively. No significant differences were observed in the side effects and neonatal outcomes between the four groups. Conclusion: The administration of 4 mg of prophylactic ondansetron was associated with an ED50 of 0.25 (95% CI, 0.15~0.30) and ED90 of 0.45 (95% CI, 0.39~0.59) µg/kg/min for phenylephrine to prevent SIH.


Asunto(s)
Anestesia Raquidea , Cesárea , Relación Dosis-Respuesta a Droga , Hipotensión , Ondansetrón , Fenilefrina , Adulto , Femenino , Humanos , Embarazo , Anestesia Epidural , Anestesia Raquidea/efectos adversos , Hipotensión/prevención & control , Hipotensión/inducido químicamente , Ondansetrón/administración & dosificación , Fenilefrina/administración & dosificación
18.
Front Oncol ; 14: 1390982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694787

RESUMEN

Background: Typical treatments for cervical high-grade squamous intraepithelial lesion (HSIL) are invasive procedures. However, these procedures often come with several severe side effects, despite their positive effects on cervical HSIL. 5-aminolevulinic acid photodynamic therapy (ALA-PDT) is a non-invasive treatment that has been successfully used to treat cervical low-grade squamous intraepithelial lesion (LSIL). In this study, we aimed to further investigate the clinical efficacy and safety of ALA-PDT in the treatment of patients with cervical HSIL. Methods: A total of 40 patients aged 20 - 41 years with cervical HSIL and high-risk Human Papilloma Virus (HR-HPV) infections were enrolled in this retrospective study from January 2019 to December 2022. Patients were treated with six times of ALA-PDT at intervals of 7-14 days. Three months after the treatment, the efficacy was evaluated through HPV genotyping and cervical cytology examination. If the cytological result was worse than ASC -US, the patient underwent colposcopy-directed biopsy immediately. Otherwise, patients would receive rigorous follow-up observation. Results: Three months after receiving ALA-PDT treatment, 65% (26/40) of cervical HSIL patients at our center showed complete regression (cytological result: normal; HR-HPV: negative). This rate increased to 82.5% (33/40) at the 12-month follow-up. None of the patients experienced disease progression after ALA-PDT therapy. The risk of persistent HR-HPV infection was 32.5% (13/40) at the 3-month follow-up after ALA-PDT. Multivariate analyses identified cervical canal involvement as an independent risk factor for persistent HR-HPV infection at the 3-month follow-up after ALA-PDT treatment. During the treatment of the 40 patients with ALA-PDT, there were no reports of severe adverse reactions. Only a limited number of patients experienced slight discomfort symptoms. Conclusion: ALA-PDT is safe and effective noninvasive therapy for patients with cervical HSIL and HR-HPV infections. It is particularly suitable for young women, who have been confirmed with cervical HSIL and have demand for fertility protection. Three months after ALA-PDT treatment, if a patient still has either ASC-US cervical cytological result and/or HR-HPV infection, rigorous observation is considered safe for her. Cervical canal involvement is an independent risk factor for persistent HR-HPV infection at the 3-month follow-up after ALA-PDT treatment.

19.
Int J Part Ther ; 11: 100007, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38757073

RESUMEN

Purpose: The breakpoint for a 360° radiotherapy gantry is typically positioned at 180°. This arbitrary setting has not been systematically evaluated for efficiency and may cause redundant gantry rotation and extended setup times. Our study aimed to identify an optimal gantry breakpoint angle for a full-gantry proton therapy system, with the goal of minimizing gantry movement. Materials and Methods: We analyzed 70 months of clinically delivered proton therapy plans (9152 plans, 131 883 fractions), categorizing them by treatment site and mapping the fields from a partial-gantry to full-gantry orientation. For each delivered fraction, we computed the minimum total gantry rotation angle as a function of gantry breakpoint position, which was varied between 0° and 360° in 1° steps. This analysis was performed separately within the entire plan cohort and individual treatment sites, both with and without the capability of over-rotating 10° past the breakpoint from either direction (20° overlap). The optimal gantry breakpoint was identified as one which resulted in a low average gantry rotation per fraction. Results: Considering mechanical constraints, 130° was identified as a reasonable balance between increased gantry-rotation efficiency and practical treatment considerations. With a 20° overlap, this selection reduced the average gantry rotation by 41.4° per fraction when compared to the standard 180° breakpoint. Disease site subgroups showed the following reduction in average gantry rotation: gastrointestinal 192.2°, thoracic 56.3°, pediatric 44.9°, genitourinary 19.9°, central nervous system 10.7°, breast 2.8°, and head and neck 0.1°. Conclusion: For a full-gantry system, a breakpoint of 130° generally outperforms the conventional 180° breakpoint. This reduction is particularly impactful for gastrointestinal, pediatric, and thoracic sites, which constitute a significant proportion of cases at our center. The adjusted breakpoint could potentially streamline patient delivery, alleviate mechanical wear, and enhance treatment precision by reducing the likelihood of patient movement during delivery.

20.
Int J Biol Macromol ; 268(Pt 2): 131936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692533

RESUMEN

With the increasing environmental and ecological problems caused by petroleum-based packaging materials, the focus has gradually shifted to natural resources for the preparation of functional food packaging materials. In addition to biodegradable properties, nanocellulose (NC) mechanical properties, and rich surface chemistry are also fascinating and desired to be one of the most probable green packaging materials. In this review, we firstly introduce the recent progress of novel applications of NC in food packaging, including intelligent packaging, nano(bio)sensors, and nano-paper; secondly, we focus on the modification techniques of NC to summarize the properties (antimicrobial, mechanical, hydrophobic, antioxidant, and so on) that are required for food packaging, to expand the new synthetic methods and application areas. After presenting all the latest advances related to material design and sustainable applications, an overview summarizing the safety of NC is presented to promote a continuous and healthy movement of NC toward the field of truly sustainable packaging.


Asunto(s)
Celulosa , Embalaje de Alimentos , Embalaje de Alimentos/métodos , Celulosa/química , Nanoestructuras/química , Antioxidantes/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA