Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cancer Lett ; 595: 217006, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38823763

RESUMEN

Driver genomic mutations in tumors define specific molecular subtypes that display distinct malignancy competence, therapeutic resistance and clinical outcome. Although TP53 mutation has been identified as the most common mutation in hepatocellular carcinoma (HCC), current understanding on the biological traits and therapeutic strategies of this subtype has been largely unknown. Here, we reveal that fatty acid ß oxidation (FAO) is remarkable repressed in TP53 mutant HCC and which links to poor prognosis in HCC patients. We further demonstrate that carnitine palmitoyltransferase 1 (CPT1A), the rate-limiting enzyme of FAO, is universally downregulated in liver tumor tissues, and which correlates with poor prognosis in HCC and promotes HCC progression in the de novo liver tumor and xenograft tumor models. Mechanically, hepatic Cpt1a loss disrupts lipid metabolism and acetyl-CoA production. Such reduction in acetyl-CoA reduced histone acetylation and epigenetically reprograms branched-chain amino acids (BCAA) catabolism, and leads to the accumulation of cellular BCAAs and hyperactivation of mTOR signaling. Importantly, we reveal that genetic ablation of CPT1A renders TP53 mutant liver cancer mTOR-addicted and sensitivity to mTOR inhibitor AZD-8055 treatment. Consistently, Cpt1a loss in HCC directs tumor cell therapeutic response to AZD-8055. CONCLUSION: Our results show genetic evidence for CPT1A as a metabolic tumor suppressor in HCC and provide a therapeutic approach for TP53 mutant HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Carnitina O-Palmitoiltransferasa , Neoplasias Hepáticas , Mutación , Proteína p53 Supresora de Tumor , Humanos , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Metabolismo de los Lípidos/genética , Transducción de Señal , Acetilcoenzima A/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino
2.
J Immunother Cancer ; 12(6)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908854

RESUMEN

BACKGROUND AND AIMS: The immunosuppressive tumor microenvironment (TME) plays an essential role in cancer progression and immunotherapy response. Despite the considerable advancements in cancer immunotherapy, the limited response to immune checkpoint blockade (ICB) therapies in patients with hepatocellular carcinoma (HCC) remains a major challenge for its clinical implications. Here, we investigated the molecular basis of the protein O-fucosyltransferase 1 (POFUT1) that drives HCC immune evasion and explored a potential therapeutic strategy for enhancing ICB efficacy. METHODS: De novo MYC/Trp53-/- liver tumor and the xenograft tumor models were used to evaluate the function of POFUT1 in immune evasion. Biochemical assays were performed to elucidate the underlying mechanism of POFUT1-mediated immune evasion. RESULTS: We identified POFUT1 as a crucial promoter of immune evasion in liver cancer. Notably, POFUT1 promoted HCC progression and inhibited T-cell infiltration in the xenograft tumor and de novo MYC/Trp53-/- mouse liver tumor models. Mechanistically, we demonstrated that POFUT1 stabilized programmed death ligand 1 (PD-L1) protein by preventing tripartite motif containing 21-mediated PD-L1 ubiquitination and degradation independently of its protein-O-fucosyltransferase activity. In addition, we further demonstrated that PD-L1 was required for the tumor-promoting and immune evasion effects of POFUT1 in HCC. Importantly, inhibition of POFUT1 could synergize with anti-programmed death receptor 1 therapy by remodeling TME in the xenograft tumor mouse model. Clinically, POFUT1 high expression displayed a lower response rate and worse clinical outcome to ICB therapies. CONCLUSIONS: Our findings demonstrate that POFUT1 functions as a novel regulator of tumor immune evasion and inhibition of POFUT1 may be a potential therapeutic strategy to enhance the efficacy of immune therapy in HCC.


Asunto(s)
Antígeno B7-H1 , Fucosiltransferasas , Inmunoterapia , Neoplasias Hepáticas , Fucosiltransferasas/metabolismo , Fucosiltransferasas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Humanos , Ratones , Animales , Antígeno B7-H1/metabolismo , Inmunoterapia/métodos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Escape del Tumor , Microambiente Tumoral , Evasión Inmune , Línea Celular Tumoral
3.
Curr Pharm Des ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38629356

RESUMEN

BACKGROUND: ChuShiWeiLing Decoction (CSWLD) is a famous classical Chinese prescription for the treatment of eczema with desirable effect in clinical practice. It has gradually exerted good curative effects on perianal eczema (PE) in recent years, but its specific mechanism is not elucidated yet. OBJECTIVE: This research explores the underlying pharmacological mechanism of CSWLD in addressing PE through network pharmacology combined with molecular docking strategy. METHODS: The key chemical compounds and potential target genes of CSWLD were screened by bioinformatics. The major targets of CSWLD were discovered using network modules. Functional annotation of Gene Ontology (GO) was undertaken, as well as pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Molecular docking of core protein-ligand interactions was modeled using AutoDock software. Pymol software was used to perform a molecular dynamics simulation for the ideal core protein-ligand that was discovered by molecular docking. RESULTS: A total of 2,853 active compounds and 922 targets of CSWLD were collected. The target with a higher degree was identified through the PPI network, namely TNF, IL6, ALB, STAT3, EGFR, TLR4, CXCL8 and PTPRC. GO and KEGG analyses suggested that CSWLD treatment of PE mainly involves cellular activation, activation of leukocytes, and adhesion among leukocytes. The molecular docking results showed that wogonin, hederagenin and quercetin of CSWLD could bind to IL-6 and TNF, respectively. CONCLUSION: Our results indicated that the bioactives, potential targets, and molecular mechanism of CSWLD against PE.

4.
Clin Transl Med ; 13(10): e1452, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37846441

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the major causes of death from cancer and has a very poor prognosis with few effective therapeutic options. Despite the approval of lenvatinib for the treatment of patients suffering from advanced HCC, only a small number of patients can benefit from this targeted therapy. METHODS: Diethylnitrosamine (DEN)-CCL4 mouse liver tumour and the xenograft tumour models were used to evaluate the function of KDM6A in HCC progression. The xenograft tumour model and HCC cell lines were used to evaluate the role of KDM6A in HCC drug sensitivity to lenvatinib. RNA-seq and ChIP assays were conducted for mechanical investigation. RESULTS: We revealed that KDM6A exhibited a significant upregulation in HCC tissues and was associated with an unfavourable prognosis. We further demonstrated that KDM6A knockdown remarkably suppressed HCC cell proliferation and migration in vitro. Moreover, hepatic Kdm6a loss also inhibited liver tumourigenesis in a mouse liver tumour model. Mechanistically, KDM6A loss downregulated the FGFR4 expression to suppress the PI3K-AKT-mTOR signalling pathway, leading to a glucose and lipid metabolism re-programming in HCC. KDM6A and FGFR4 levels were positively correlated in HCC specimens and mouse liver tumour tissues. Notably, KDM6A knockdown significantly inhibited the efficacy of lenvatinib therapy in HCC cells in vitro and in vivo. CONCLUSIONS: Our findings revealed that KDM6A promoted HCC progression by activating FGFR4 expression and may be an essential molecule for influencing the efficacy of lenvatinib in HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fosfatidilinositol 3-Quinasas , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética
5.
Hepatology ; 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556368

RESUMEN

BACKGROUND AND AIMS: Epigenetic plasticity is a major challenge in cancer-targeted therapy. However, the molecular basis governing this process has not yet been clearly defined. Despite the considerable success of poly(ADP-ribose) polymerase inhibitors (PARPi) in cancer therapy, the limited response to PARPi, especially in HCC, has been a bottleneck in its clinical implications. Herein, we investigated the molecular basis of the histone methyltransferase KMT5C (lysine methyltransferase 5C) that governs PARPi sensitivity and explored a potential therapeutic strategy for enhancing PARPi efficacy. APPROACH AND RESULTS: We identified KMT5C, a trimethyltransferase of H4K20, as a targetable epigenetic factor that promoted liver tumor growth in mouse de novo MYC/Trp53-/- and xenograft liver tumor models. Notably, induction of KMT5C by environmental stress was crucial for DNA repair and HCC cell survival. Mechanistically, KMT5C interacted with the pivotal component of homologous recombination repair, RAD51, and promoted RAD51/RAD54 complex formation, which was essential for the activation of dsDNA breaks repair. This effect depended on the methyltransferase activity of KMT5C. We further demonstrated that the function of KMT5C in promoting HCC progression was dependent on RAD51. Importantly, either a pharmacological inhibitor (A196) or genetic inhibition of KMT5C sensitized liver cancer cells to PARPi. CONCLUSIONS: KMT5C played a vital role in promoting liver cancer progression by activating the DNA repair response. Our results revealed a novel therapeutic approach using the KMT5C inhibitor A196, concurrent with olaparib, as a potential HCC therapy.

6.
Ecol Evol ; 13(4): e9903, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37038528

RESUMEN

Animal abundance estimation is increasingly based on drone or aerial survey photography. Manual postprocessing has been used extensively; however, volumes of such data are increasing, necessitating some level of automation, either for complete counting, or as a labour-saving tool. Any automated processing can be challenging when using such tools on species that nest in close formation such as Pygoscelis penguins. We present here a customized CNN-based density map estimation method for counting of penguins from low-resolution aerial photography. Our model, an indirect regression algorithm, performed significantly better in terms of counting accuracy than standard detection algorithm (Faster-RCNN) when counting small objects from low-resolution images and gave an error rate of only 0.8 percent. Density map estimation methods as demonstrated here can vastly improve our ability to count animals in tight aggregations and demonstrably improve monitoring efforts from aerial imagery.

7.
Ann Transl Med ; 7(16): 379, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31555693

RESUMEN

BACKGROUND: Postoperative abdominal adhesions formation is considered a significant clinical entity implicating the healing process following major pelvic and abdominal surgery, with serious clinical complications and need for substantial health care expenditures. However, setting a physical barrier between the damage site and the neighboring tissues is a convenient and highly valid way to minimize or prevent peritoneal adhesions. The present experimental study evaluated the preventive effect of ligustrazine nanoparticles nano spray (LNNS) on postoperative abdominal adhesion in rats and explored its mechanism. METHODS: Sixty male Sprague Dawley (SD) rats were randomly divided into sham operation group, control group, sodium hyaluronate group and low, medium, and high dose LNNS groups. All groups were prepared with abdominal adhesion models except for the sham operation group. The models were made by opening the abdominal cavity to and filing the serosa in ileocecal junction. The abdominal cavity of rats in the sham operation group were only opened and sutured. The wound surface of rats in the sodium hyaluronate group, low, medium, and high dose LNNS groups were sprayed with sodium hyaluronate gel (0.5 mL/kg) and LNNS (2.5, 5, and 10 mL/kg). Rats in each group were sacrificed 7 days later. Degree of adhesion was evaluated by naked eyes and the pathological sections were scored afterwards. The collagen synthesis in adhesion tissues was detected by Masson's trichrome stain, and the activities of reactive oxygen species (ROS), nitric oxide (NO), superoxide dismutase (SOD) and malondialdehyde (MDA) in peritoneal fluid were detected with the method of chromogenic substrate. Levels of TNF-α and IL-1ß in serum, and the protein levels of MCP-1 and MMP-9 in adhesion tissues were detected by ELISA and. immunohistochemistry respectively. RT-PCR and Western blot were utilized to identify the expression levels of Nrf2, heme-oxygenase-1, NQO1 mRNA and protein in adherent intestinal tissues. RESULTS: Compared with the control group, the incidence of postoperative abdominal adhesions decreased in the low, medium and high dose LNNS groups, while the expression of SOD in the peritoneal fluid significantly increased. The expression levels of ROS, MDA and NO were reduced remarkably (P<0.05), so were the expression levels of serum TNF-α and IL-1ß (P<0.01) and the expression of MCP-1 protein in adhesion tissues. The MMP-9 protein expression, and Nrf2, heme-oxygenase-1, NQO1 mRNA and protein expressions increased. CONCLUSIONS: LNNS with medium or high dose can significantly reduce the incidence of postoperative abdominal adhesions, the mechanism of which may be the activation of Nrf2/ARE pathway, resulting in the up-regulation of Nrf2, heme-oxygenase-1, NQO1 and mRNA expression, as well as the levels of TNF-α and IL-1ß in peripheral blood and the expression of MCP-1 protein in adhesion tissues. Meanwhile, the content of MMP-9 protein in adhesion tissues were raised, and oxidative stress and inflammatory response are released.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA