Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38005200

RESUMEN

Nanofluid-enhanced oil recovery (EOR) technology is an innovative approach to enhancing oil production in oilfields. It entails the dispersion of nanoparticles within a fluid, strategically utilizing the distinctive properties of these nanoparticles (NPs) to engage with reservoir rocks or crude oil, resulting in a significant enhancement of the oil recovery rate. Despite the notable advantages of nanofluid EOR technology over conventional oil recovery methods such as binary and ternary flooding, practical implementations continue to grapple with a range of pressing challenges. These challenges encompass concerns regarding the economic viability, stability, and adaptability of nanomaterials, which pose significant barriers to the widespread adoption of nanofluid EOR technology in the oil field. To tackle these challenges, addressing the current issues may involve selecting simpler and more readily available materials coupled with straightforward material modification techniques. This approach aims to more effectively meet the requirements of large-scale on-site applications. Within this framework, this review systematically explores commonly employed nanofluids in recent years, including inorganic nanofluids, organic nanofluids, and composite nanofluids. It categorizes the research advancements in optimizing modification techniques and provides a comprehensive overview of the mechanisms that underpin nanofluid EOR technology and its practical applications in oilfields. This comprehensive review aims to offer valuable references and serve as a solid foundation for subsequent research endeavors.

2.
Front Chem ; 10: 960067, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118316

RESUMEN

The world is rich in heavy oil resources, however, the recovery difficulty and cost are both higher than that of conventional crude oil. To date, the most common method of recovering heavy oil is steam flooding. However, once the steam breaks through the geological formation, gas channeling readily occurs, which leads to a rapid decrease of the steam drive efficiency. To improve the swept volume of steam in the geological formation, a series of hydrophobic silica particles for stabilizing foam was synthesized. This kind of particles used hydrophilic nano silica particles as reactant. Hydrophobic groups with cationic long carbon chains were grafted onto the surface of hydrophilic silica particles by synthetic silane quaternary ammonium salt. When the quantity of silane quaternary ammonium salt used in the modification reaction is different, the product had various degrees of wettability. The hydrophobic particles with the contact angle closest to 90° had the best foam stabilization effect on the betaine zwitterionic surfactant LAB. For LAB solution with mass fraction of 0.3%, the half-life of foam was extended into 160% when the mass fraction of particles was 0.5%. The higher the gas-liquid ratio, the better the plugging effect of foam agent with hydrophobic particles presented in porous media. The adsorption test of hydrophobic particles indicated that hydrophobic particles improved the stability of foam liquid membrane by improving the adsorption capacity of surfactant molecules. The thermal stability of hydrophobic silica particles exceeded 200°C, and the good foam stability made it a potential additive for foam oil displacement in high-temperature geological formation.

3.
Front Chem ; 10: 865832, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665059

RESUMEN

With the continuous improvement in oilfield development and the application of tertiary oil recovery technology, the water content of oilfield-produced fluids has gradually increased, and a large number of oilfield sewage with complex components has also been produced after oil-water separation, and effective treatment is urgently needed. ASP flooding sewage contains alkali, various surfactants, polymers, microemulsion oil droplets, and solid impurities, which are difficult to be effectively treated by traditional water treatment agents and methods. In this study, aminopropyl triethoxysilane (APTES) was used to modify the nano-Fe3O4 coated with tetraethyl silicate (TEOS). The product was used as the ferromagnetic nano-core for the iterative reaction of Michael addition and ester amidation to synthesize a magnetic hyperbranched polyamide amine, and its performance in the treatment of ASP flooding wastewater was evaluated experimentally. For the preparation of APTES-modified Fe3O4@SiO2 (FOSN) product, TEOS was coated over Fe3O4 in an ethanol aqueous solution environment and then APTES was added dropwise. The first-generation branched product (1-FSMN) was obtained by the reaction of FOSN and methyl acrylate graft product (FOSN-M) with ethylenediamine, and the highest yield was 93.7%. The highest yield of the second-generation branched product (2-FSMN) was 91.6%. In this study, a composite flooding wastewater sample from a block in the Bohai oilfield was taken. The suspended solids content was 143 mg/L, the oil content was 921.09 mg/L, the turbidity was 135 NTU, and the zeta potential was -47 mV. The third-generation hyperbranched polymer (3-FSMN) and its quaternary ammonium salt (3-FSMN-Q) performed best in the appropriate dosage range, with the highest oil removal rate of 97%, suspended solid removal rate of 90.3%, turbidity reduction rate of 86.6% and zeta potential reduction rate of 88%. For 3-FSMN and its quaternary ammonium salt, the gravity/magnetic PAC compound treatment experiment was carried out. In the settlement time of only 5 min, 3-FSMN/PAC and 3-FSMN-Q/PAC can achieve the maximum oil removal rate of 87.1% and suspended solids removal rate of 87.3% for polymer containing wastewater from ASP flooding, and 86.3 and 86.0% for 120 mg/L. Its treatment capacity was much better than that of common treatment agent combination (CPAM/PAC).

4.
Front Chem ; 9: 738717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805089

RESUMEN

A hyperbranched carboxylate-type polymer was synthesized through esterification and carboxymethylation, and its performance on enhanced oil recovery was experimentally evaluated. The optimum condition for esterification was 8 h at 120°C, where 3% PTSA as the catalyst and 9:1 mol ratio of the AB2 intermediate and trimethylolpropane were used. The optimum condition for carboxymethylation was 4 h at 80°C. The critical micelle concentration of the hyperbranched polymer was 433.63 mg/L, the Krafft point was 5°C, and the surface tension was lowered to 28 mN/m. In the range of 400-500 mg/L concentration, the adsorption onto the oil sand surface achieved equilibrium, and micellar solubilization reached 600 ml/mol. The interfacial tension can be lowered to a level of 10-2 mN/m by the single use of the hyperbranched polymer, and the value further decreased to a level of 10-3 mN/m while being formulated with sodium dodecylsulfate or NaOH. Oil recovery of water flooding was further enhanced by the single use of a hyperbranched polymer or the combination of hyperbranched polymer/sodium dodecylsulfate. The latter exhibited more prosperous advantages in low-permeability reservoirs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA