Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2799, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555282

RESUMEN

Creating microenvironments that mimic an enzyme's active site is a critical aspect of supramolecular confined catalysis. In this study, we employ the commonly used chiral 1,1'-bi-2-naphthol (BINOL) phosphates as subcomponents to construct supramolecular hollow nanotube in an aqueous medium through non-covalent intermolecular recognition and arrangement. The hexagonal nanotubular structure is characterized by various techniques, including X-ray, NMR, ESI-MS, AFM, and TEM, and is confirmed to exist in a homogeneous aqueous solution stably. The nanotube's length in solution depends on the concentration of chiral BINOL-phosphate as a monomer. Additionally, the assembled nanotube can accelerate the rate of the 3-aza-Cope rearrangement reaction by up to 85-fold due to the interior confinement effect. Based on the detailed kinetic and thermodynamic analyses, we propose that the chain-like substrates are constrained and pre-organized into a reactive chair-like conformation, which stabilizes the transition state of the reaction in the confined nanospace of the nanotube. Notably, due to the restricted conformer with less degrees of freedom, the entropic barrier is significantly reduced compared to the enthalpic barrier, resulting in a more pronounced acceleration effect.

2.
Commun Chem ; 5(1): 104, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36697950

RESUMEN

Developing effective strategies to improve the hydrophilicity or aqueous solubility of hydrophobic molecular scaffolds is meaningful for both academic research and industrial applications. Herein, we demonstrate that stepwise and precise N/O heteroatoms doping on a polycyclic aromatic skeleton can gradually alter these structures from hydrophobic to hydrophilic, even resulting in excellent aqueous solubility. The Hansen solubility parameters (HSP) method shows that the three partial solubility parameters are closely related to N/O doping species, numbers and positions on the molecular panel. The hydrogen bonding solubility parameter indicates that the hydrogen bonding interactions between N/O doped molecules and water play a key role in enhancing hydrophilicity. Moreover, three optimized water-soluble molecules underwent a self-assembly process to form stable nanoparticles in water, thus facilitating better hydrogen bonding interactions disclosed by HSP calculations, NMR and single crystal X-ray analysis. These ensembles even show quasi-solid properties in water from NMR and luminescence perspectives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA