Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomed Opt Express ; 15(6): 3914-3931, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867769

RESUMEN

Virtual surgical training is crucial for enhancing minimally invasive surgical skills. Traditional geometric reconstruction methods based on medical CT/MRI images often fall short in providing color information, which is typically generated through pseudo-coloring or artistic rendering. To simultaneously reconstruct both the geometric shape and appearance information of organs, we propose a novel organ model reconstruction network called Endoscope-NeSRF. This network jointly leverages neural radiance fields and Signed Distance Function (SDF) to reconstruct a textured geometric model of the organ of interest from multi-view photometric images acquired by an endoscope. The prior knowledge of the inverse correlation between the distance from the light source to the object and the radiance improves the real physical properties of the organ. The dilated mask further refines the appearance and geometry at the organ's edges. We also proposed a highlight adaptive optimization strategy to remove highlights caused by the light source during the acquisition process, thereby preventing the reconstruction results in areas previously affected by highlights from turning white. Finally, the real-time realistic rendering of the organ model is achieved by combining the inverse rendering and Bidirectional Reflectance Distribution Function (BRDF) rendering methods. Experimental results show that our method closely matches the Instant-NGP method in appearance reconstruction, outperforming other state-of-the-art methods, and stands as the superior method in terms of geometric reconstruction. Our method obtained a detailed geometric model and realistic appearance, providing a realistic visual sense for virtual surgical simulation, which is important for medical training.

2.
Int J Comput Assist Radiol Surg ; 19(5): 951-960, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38413491

RESUMEN

PURPOSE: In virtual surgery, the appearance of 3D models constructed from CT images lacks realism, leading to potential misunderstandings among residents. Therefore, it is crucial to reconstruct realistic endoscopic scene using multi-view images captured by an endoscope. METHODS: We propose an Endoscope-NeRF network for implicit radiance fields reconstruction of endoscopic scene under non-fixed light source, and synthesize novel views using volume rendering. Endoscope-NeRF network with multiple MLP networks and a ray transformer network represents endoscopic scene as implicit field function with color and volume density at continuous 5D vectors (3D position and 2D direction). The final synthesized image is obtained by aggregating all sampling points on each ray of the target camera using volume rendering. Our method considers the effect of distance from the light source to the sampling point on the scene radiance. RESULTS: Our network is validated on the lung, liver, kidney and heart of pig collected by our device. The results show that the novel views of endoscopic scene synthesized by our method outperform existing methods (NeRF and IBRNet) in terms of PSNR, SSIM, and LPIPS metrics. CONCLUSION: Our network can effectively learn a radiance field function with generalization ability. Fine-tuning the pre-trained model on a new endoscopic scene to further optimize the neural radiance fields of the scene, which can provide more realistic, high-resolution rendered images for surgical simulation.


Asunto(s)
Endoscopía , Imagenología Tridimensional , Porcinos , Animales , Imagenología Tridimensional/métodos , Endoscopía/métodos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos , Humanos , Simulación por Computador , Cirugía Asistida por Computador/métodos , Hígado/cirugía , Hígado/diagnóstico por imagen , Pulmón/cirugía , Pulmón/diagnóstico por imagen
3.
Heliyon ; 9(7): e17599, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37449096

RESUMEN

The incidence of lung cancer has seen a significant increase in recent times, leading to a rise in fatalities. The detection of pulmonary nodules from CT images has emerged as an effective method to aid in the diagnosis of lung cancer. Ensuring information security holds utmost significance in the detection of nodules, with particular attention given to safeguarding patient privacy within the context of the Internet of Things (IoT). In this regard, migration learning emerges as a potent technique for preserving the confidentiality of patient data. Firstly, we applied several data-preprocessing steps such as lung segmentation based on K-Means, denoising methods, and lung parenchyma extraction through a dedicated medical IoT network. We used the Microsoft Common Object in Context (MS-COCO) dataset to pre-train the detection framework and fine-tuned it with the Lung Nodule Analysis 16 (LUNA16) dataset to adapt to nodule detection tasks. To evaluate the effectiveness of our proposed pipeline, we conducted extensive experiments that included subjective evaluation of detection results and quantitative data analysis. The results of these experiments demonstrated the efficacy of our approach in accurately detecting pulmonary nodules. Our study provides a promising framework for trustworthy pulmonary nodule detection on lung parenchyma images using a secured hyper-deep algorithm, which has the potential to improve lung cancer diagnosis and reduce fatalities associated with it.

4.
J Healthc Eng ; 2019: 6813719, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30723539

RESUMEN

The aim of this study is to develop and assess the peg transfer training module face, content and construct validation use of the box, virtual reality (VR), cognitive virtual reality (CVR), augmented reality (AR), and mixed reality (MR) trainer, thereby to compare advantages and disadvantages of these simulators. Training system (VatsSim-XR) design includes customized haptic-enabled thoracoscopic instruments, virtual reality helmet set, endoscope kit with navigation, and the patient-specific corresponding training environment. A cohort of 32 trainees comprising 24 novices and 8 experts underwent the real and virtual simulators that were conducted in the department of thoracic surgery of Yunnan First People's Hospital. Both subjective and objective evaluations have been developed to explore the visual and haptic potential promotions in peg transfer education. Experiments and evaluation results conducted by both professional and novice thoracic surgeons show that the surgery skills from experts are better than novices overall, AR trainer is able to provide a more balanced training environments on visuohaptic fidelity and accuracy, box trainer and MR trainer demonstrated the best realism 3D perception and surgical immersive performance, respectively, and CVR trainer shows a better clinic effect that the traditional VR trainer. Combining these in a systematic approach, tuned with specific fidelity requirements, medical simulation systems would be able to provide a more immersive and effective training environment.


Asunto(s)
Cirugía Torácica Asistida por Video/educación , Adulto , Realidad Aumentada , Competencia Clínica , Simulación por Computador , Instrucción por Computador/métodos , Instrucción por Computador/estadística & datos numéricos , Femenino , Humanos , Neoplasias Pulmonares/cirugía , Masculino , Persona de Mediana Edad , Programas Informáticos , Cirugía Torácica Asistida por Video/estadística & datos numéricos , Interfaz Usuario-Computador , Realidad Virtual , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA