RESUMEN
BACKGROUND & AIMS: Patients with intrahepatic cholangiocarcinoma (iCCA) respond poorly to immune checkpoint blockades (ICBs). In this study, we aimed to dissect the potential mechanisms underlying poor response to ICBs and explore a rational ICB-based combination therapy in iCCA. METHODS: scRNA-seq dataset GSE151530 was analyzed to investigate the differentially expressed genes in malignant cells following ICBs therapy. RNA-seq analysis and western blot assays were performed to examine the upstream and downstream signaling pathways of CD73. Subcutaneous tumor xenograft models were utilized to investigate the impact of CD73 on iCCA growth. Plasmid AKT/NICD-induced spontaneous murine iCCAs were used to explore the therapeutic efficacy of CD73 enzymatic inhibitor AB680 combined with PD-1 blockade. Time-of-flight mass cytometry (CyTOF) was conducted to identify the tumor-infiltrating immune cell populations and their functional changes in murine iCCAs treated with AB680 in combination with PD-1 antibody. RESULTS: scRNA-seq analysis identified elevated CD73 expression in malignant cells in response to ICBs therapy. Mechanistically, ICBs therapy upregulated CD73 expression in malignant cells via TNF-α/NF-κB signaling pathway. In vivo studies revealed that CD73 inhibition suppressed the growth of subcutaneous tumors, and achieved synergistic depression effects with gemcitabine and cisplatin (GC). Adenosine produced by CD73 activates AKT/GSK3ß/ß-catenin signaling axis in iCCA cells. CD73 inhibitor AB680 potentiates anti-tumor efficacy of PD-1 antibody in murine iCCAs. CyTOF analysis showed that AB680 combined with anti-PD-1 therapy promoted the infiltration of CD8+ T, CD4+ T cells, and NK cells in murine iCCAs, while simultaneously decreased the proportions of macrophages and neutrophils. Moreover, AB680 combined with anti-PD-1 significantly upregulated the expression of Granzyme B, Tbet and co-stimulatory molecule ICOS in infiltrating CD8+ T cells. CONCLUSIONS: CD73 inhibitor AB680 limits tumor progression and potentiates therapeutic efficacy of GC chemotherapy or anti-PD-1 treatment in iCCA. AB680 combined with anti-PD-1 therapy effectively elicits anti-tumor immune response.
Asunto(s)
5'-Nucleotidasa , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Inhibidores de Puntos de Control Inmunológico , Receptor de Muerte Celular Programada 1 , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Colangiocarcinoma/inmunología , Animales , 5'-Nucleotidasa/antagonistas & inhibidores , 5'-Nucleotidasa/metabolismo , Ratones , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/inmunología , Neoplasias de los Conductos Biliares/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Progresión de la EnfermedadRESUMEN
Lymph node metastasis (LNM) facilitates distant tumor colonization and leads to the high mortality in patients with intrahepatic cholangiocarcinoma (ICC). However, it remains elusive how ICC cells subvert immune surveillance within the primary tumor immune microenvironment (TIME) and subsequently metastasize to lymph nodes (LNs). In this study, scRNA-seq and bulk RNA-seq analyses identified decreased infiltration of dendritic cells (DCs) into primary tumor sites of ICC with LNM, which was further validated via dual-color immunofluorescence staining of 219 surgically resected ICC samples. Tumor-infiltrating DCs correlated with increased CD8+ T cell infiltration and better prognoses in ICC patients. Mechanistically, ß-catenin-mediated CXCL12 suppression accounted for the impaired DC recruitment in ICC with LNM. Two mouse ICC cell lines MuCCA1 and mIC-23 cells were established from AKT/NICD or AKT/YAP-induced murine ICCs respectively and were utilized to construct the footpad tumor LNM model. We found that expansion and activation of conventional DCs (cDCs) by combined Flt3L and poly(I:C) (FL-pIC) therapy markedly suppressed the metastasis of mIC-23 cells to popliteal LNs. Moreover, ß-catenin inhibition restored the defective DC infiltration into primary tumor sites and reduced the incidence of LNM in ICC. Collectively, our findings identify tumor cell intrinsic ß-catenin activation as a key mechanism for subverting DC-mediated anti-tumor immunity in ICC with LNM. FL-pIC therapy or ß-catenin inhibitor could merit exploration as a potential regimen for mitigating ICC cell metastasis to LNs and achieving effective tumor immune control.
RESUMEN
PURPOSE: Hepatocellular carcinoma (HCC) is a critical global health concern, with existing treatments benefiting only a minority of patients. Recent findings implicate the chemokine ligand 17 (CCL17) and its receptor CCR4 as pivotal players in the tumor microenvironment (TME) of various cancers. This investigation aims to delineate the roles of CCL17 and CCR4 in modulating the tumor's immune landscape, assessing their potential as therapeutic interventions and prognostic markers in HCC. METHODS: 873 HCC patients post-radical surgery from 2008 to 2012 at Zhongshan Hospital, Fudan University were retrospectively examined. These individuals were stratified into a training cohort (n = 354) and a validation cohort (n = 519). Through immunohistochemical analysis on HCC tissue arrays, the expressions of CCL17, CCR4, CD73, CD47, HHLA2, and PD-L1 were quantified. Survival metrics were analyzed using the Cox model, and a prognostic nomogram was devised via R software. RESULTS: The investigation confirmed the presence of CCL17 and CCR4 within the cancerous and stromal compartments of HCC tissues, associating their heightened expression with adverse clinical markers and survival outcomes. Notably, the interplay between CD73 and CCR4 expression in tumor stroma highlighted a novel cellular entity, CCR4 + CD73 + stromal cells, impacting overall and relapse-free survival. A prognostic nomogram amalgamating these immunological markers and clinical variables was established, offering refined prognostic insights and aiding in the management of HCC. The findings suggest that reduced CCR4 and CCR4 + CD73 + cell prevalence may forecast improved outcomes post-TACE. CONCLUSION: This comprehensive evaluation of CCR4, CCL17, and associated markers introduces a nuanced understanding of the HCC immunological milieu, proposing CCR4 + CD73 + stromal cells as critical to HCC pathogenesis and patient stratification.
Asunto(s)
5'-Nucleotidasa , Biomarcadores de Tumor , Carcinoma Hepatocelular , Quimiocina CCL17 , Proteínas Ligadas a GPI , Neoplasias Hepáticas , Receptores CCR4 , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/inmunología , Quimiocina CCL17/metabolismo , Femenino , Masculino , Pronóstico , Receptores CCR4/metabolismo , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , 5'-Nucleotidasa/metabolismo , Estudios Retrospectivos , Microambiente Tumoral/inmunología , Proteínas Ligadas a GPI/metabolismo , Anciano , AdultoRESUMEN
Peripheral blood lymphocytes (PBLs), which play a pivotal role in orchestrating the immune system, garner minimal attention in hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). The impact of primary liver cancers on PBLs remains unexplored. In this study, flow cytometry facilitated the quantification of cell populations, while transcriptome of PBLs was executed utilizing 10× single-cell sequencing technology. Additionally, pertinent cases were curated from the GEO database. Subsequent bioinformatics and statistical analyses were conducted utilizing R (4.2.1) software. Elevated counts of NK cells and CD8+ T cells were observed in both ICC and HCC when compared to benign liver disease (BLD). In the multivariate Cox model, NK cells and CD8+ T cells emerged as independent risk factors for recurrence-free survival. Single-cell sequencing of PBLs uncovered the downregulation of TGFß signaling in tumor-derived CD8+ T cells. Pathway enrichment analysis, based on differential expression profiling, highlighted aberrations in selenium metabolism. Proteomic analysis of preoperative and postoperative peripheral blood samples from patients undergoing tumor resection revealed a significant upregulation of SELENBP1 and a significant downregulation of SEPP1. Primary liver cancer has a definite impact on PBLs, manifested by alterations in cellular quantities and selenoprotein metabolism.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Selenio , Humanos , Carcinoma Hepatocelular/metabolismo , Selenio/metabolismo , Proteómica , Neoplasias Hepáticas/metabolismo , Linfocitos T CD8-positivos , Células Asesinas NaturalesRESUMEN
Sorafenib was first approved as the standard treatment for advanced hepatocellular carcinoma (HCC). Despite providing an advantage in terms of patient survival, sorafenib has shown poor clinical efficacy and severe side effects after long-term treatment. Thus, combination treatment is a potential way to increase the effectiveness and reduce the dose-limiting toxicity of sorafenib. Extracts of the seeds of Annona montana have shown synergistic antitumor activity with sorafenib, and seven annonaceous acetogenins, including three new acetogenins, muricin P (2), muricin Q (3), and muricin R (4), were isolated from the extracts by bioguided fractionation and showed synergy with sorafenib. The structures of these compounds were determined using spectroscopic and chemical methods. Annonacin (1) and muricin P (2), which reduced intracellular ATP levels and promoted apoptosis, exhibited synergistic cytotoxicity with sorafenib in vitro. In vivo, annonacin (1) displayed synergistic antitumor activity by promoting tumor cell apoptosis. Moreover, the potential mechanism of annonacin (1) was predicted by transcriptomic analysis, which suggested that SLC33A1 is a potential target in HCC. Annonacin (1) might be a novel candidate for combination therapy with sorafenib against advanced HCC.
Asunto(s)
Antineoplásicos Fitogénicos , Carcinoma Hepatocelular , Furanos , Lactonas , Neoplasias Hepáticas , Humanos , Acetogeninas/farmacología , Acetogeninas/química , Sorafenib/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Estructura Molecular , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Neoplasias Hepáticas/tratamiento farmacológico , Línea Celular Tumoral , ApoptosisRESUMEN
Intratumoral immune status influences tumor therapeutic response, but it remains largely unclear how the status determines therapies for patients with intrahepatic cholangiocarcinoma. Here, we examine the single-cell transcriptional and TCR profiles of 18 tumor tissues pre- and post- therapy of gemcitabine plus oxaliplatin, in combination with lenvatinib and anti-PD1 antibody for intrahepatic cholangiocarcinoma. We find that high CD8 GZMB+ and CD8 proliferating proportions and a low Macro CD5L+ proportion predict good response to the therapy. In patients with a poor response, the CD8 GZMB+ and CD8 proliferating proportions are increased, but the CD8 GZMK+ proportion is decreased after the therapy. Transition of CD8 proliferating and CD8 GZMB+ to CD8 GZMK+ facilitates good response to the therapy, while Macro CD5L+-CD8 GZMB+ crosstalk impairs the response by increasing CTLA4 in CD8 GZMB+. Anti-CTLA4 antibody reverses resistance of the therapy in intrahepatic cholangiocarcinoma. Our data provide a resource for predicting response of the combination therapy and highlight the importance of CD8+T-cell status conversion and exhaustion induced by Macro CD5L+ in influencing the response, suggesting future avenues for cancer treatment optimization.
Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Compuestos de Fenilurea , Quinolinas , Humanos , Oxaliplatino/uso terapéutico , Gemcitabina , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Linfocitos T CD8-positivos , Conductos Biliares Intrahepáticos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/patología , Proteínas Reguladoras de la Apoptosis , Receptores DepuradoresRESUMEN
Primary liver cancer (PLC) poses a leading threat to human health, and its treatment options are limited. Meanwhile, the investigation of homogeneity and heterogeneity among PLCs remains challenging. Here, using single-cell RNA sequencing, spatial transcriptomic and bulk multi-omics, we elaborated a molecular architecture of 3 PLC types, namely hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular-cholangiocarcinoma (CHC). Taking a high-resolution perspective, our observations revealed that CHC cells exhibit internally discordant phenotypes, whereas ICC and HCC exhibit distinct tumor-specific features. Specifically, ICC was found to be the primary source of cancer-associated fibroblasts, while HCC exhibited disrupted metabolism and greater individual heterogeneity of T cells. We further revealed a diversity of intermediate-state cells residing in the tumor-peritumor junctional zone, including a congregation of CPE+ intermediate-state endothelial cells (ECs), which harbored the molecular characteristics of tumor-associated ECs and normal ECs. This architecture offers insights into molecular characteristics of PLC microenvironment, and hints that the tumor-peritumor junctional zone could serve as a targeted region for precise therapeutical strategies.
Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Células Endoteliales/metabolismo , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Conductos Biliares Intrahepáticos , Microambiente Tumoral/genéticaRESUMEN
The combination of antiangiogenic agents and immune checkpoint inhibitors is more efficient than monotherapy in the management of hepatocellular carcinoma (HCC). Lenvatinib plus anti-PD1 antibodies have become the mainstay in HCC treatment. However, more than half the patients with HCC are non-responsive, and the mechanisms underlying drug resistance are unknown. To address this issue, we performed single-cell sequencing on samples from six HCC patients, aiming to explore cellular signals and molecular pathways related to the effect of lenvatinib plus anti-PD1 antibody treatment. GSVA analysis revealed that treatment with lenvatinib plus anti-PD1 antibody led to an increase in the TNF-NFKB pathway across all immune cell types, as compared to the non-treatment group. Mucosal-associated invariant T (MAIT) cells were found to secrete TNF, which activates TNFRSF1B on regulatory T cells, thereby promoting immunosuppression. Additionally, TNFSF9 was highly expressed in anticancer immune cells, including CD8+ effector T cells, MAIT, and γδ T cells in the treatment group. We also detected CD3+ macrophages in both HCC and pan-cancer tissues. Overall, our findings shed light on the potential mechanisms behind the effectiveness of lenvatinib plus anti-PD1 antibody treatment in HCC patients. By understanding these mechanisms better, we may be able to develop more effective treatment strategies for patients who do not respond to current therapies.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Asociadas a Mucosa , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Células T Invariantes Asociadas a Mucosa/metabolismo , Compuestos de Fenilurea/uso terapéutico , Compuestos de Fenilurea/farmacología , Receptores Tipo II del Factor de Necrosis TumoralRESUMEN
Purpose: Immunogenic cell death (ICD) is a cell death modality that plays a vital role in anticancer therapy. In this study, we investigated whether lenvatinib induces ICD in hepatocellular carcinoma and how it affects cancer cell behavior. Patients and Methods: Hepatoma cells were treated with 0.5 µM lenvatinib for two weeks, and damage-associated molecular patterns were assessed using the expression of calreticulin, high mobility group box 1, and ATP secretion. Transcriptome sequencing was performed to investigate the effects of lenvatinib on hepatocellular carcinoma. Additionally, CU CPT 4A and TAK-242 were used to inhibit TLR3 and TLR4 expressions, respectively. Flow cytometry was used to assess PD-L1 expression. Kaplan-Meier and Cox regression models were applied for prognosis assessment. Results: After treatment with lenvatinib, there was a significant increase in ICD-associated damage-associated molecular patterns, such as calreticulin on the cell membrane, extracellular ATP, and high mobility group box 1, in hepatoma cells. Following treatment with lenvatinib, there was a significant increase in the downstream immunogenic cell death receptors, including TLR3 and TLR4. Furthermore, lenvatinib increased the expression of PD-L1, which was later inhibited by TLR4. Interestingly, inhibiting TLR3 in MHCC-97H and Huh7 cells strengthened their proliferative capacity. Moreover, TLR3 inhibition was identified as an independent risk factor for overall survival and recurrence-free survival in patients with hepatocellular carcinoma. Conclusion: Our study revealed that lenvatinib induced ICD in hepatocellular carcinoma and upregulated PD-L1 expression through TLR4 while promoting cell apoptosis through TLR3. Antibodies against PD-1/PD-L1 can enhance the efficacy of lenvatinib in the management of hepatocellular carcinoma.
RESUMEN
BACKGROUND: CD73 promotes progression in several malignancies and is considered as a novel immune checkpoint. However, the function of CD73 in intrahepatic cholangiocarcinoma (ICC) remains uncertain. In this study, we aim to investigate the role of CD73 in ICC. METHODS: Multi-omics data of 262 ICC patients from the FU-iCCA cohort were analyzed. Two single-cell datasets were downloaded to examine the expression of CD73 at baseline and in response to immunotherapy. Functional experiments were performed to explore the biological functions of CD73 in ICC. The expression of CD73 and HHLA2 and infiltrations of CD8 + , Foxp3 + , CD68 + , and CD163 + immune cells were evaluated by immunohistochemistry in 259 resected ICC samples from Zhongshan Hospital. The prognostic value of CD73 was assessed by Cox regression analysis. RESULTS: CD73 correlated with poor prognosis in two ICC cohorts. Single-cell atlas of ICC indicated high expression of CD73 on malignant cells. TP53 and KRAS gene mutations were more frequent in patients with high CD73 expression. CD73 promoted ICC proliferation, migration, invasion, and epithelial-mesenchymal transition. High CD73 expression was associated with a higher ratio of Foxp3 + /CD8 + tumor-infiltrating lymphocytes (TILs) and CD163 + /CD68 + tumor-associated macrophages (TAMs). A positive correlation between CD73 and CD44 was observed, and patients with high CD73 expression showed elevated expression of HHLA2. CD73 expression in malignant cells was significantly upregulated in response to immunotherapy. CONCLUSIONS: High expression of CD73 is associated with poor prognosis and a suppressive tumor immune microenvironment in ICC. CD73 could potentially be a novel biomarker for prognosis and immunotherapy in ICC.
Asunto(s)
5'-Nucleotidasa , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/patología , Factores de Transcripción Forkhead , Inmunoglobulinas , Pronóstico , Microambiente Tumoral , 5'-Nucleotidasa/química , 5'-Nucleotidasa/metabolismo , BiomarcadoresRESUMEN
Advanced intrahepatic cholangiocarcinoma (ICC) has a dismal prognosis. Here, we report the efficacy and safety of combining toripalimab, lenvatinib, and gemcitabine plus oxaliplatin (GEMOX) as first-line therapy for advanced ICC. Thirty patients with pathologically confirmed advanced ICC received intravenous gemcitabine (1 g/m2) on Days 1 and 8 and oxaliplatin (85 mg/m2) Q3W for six cycles along with intravenous toripalimab (240 mg) Q3W and oral lenvatinib (8 mg) once daily for one year. The expression of programmed death-ligand 1 (PD-L1) and genetic status was investigated in paraffin-embedded tissues using immunohistochemistry and whole-exome sequencing (WES) analysis. The primary endpoint was the objective response rate (ORR). Secondary outcomes included safety, overall survival (OS), progression-free survival (PFS), disease control rate (DCR) and duration of response (DoR). As of July 1, 2022, the median follow-up time was 23.5 months, and the ORR was 80%. Twenty-three patients achieved partial response, and one achieved complete response. Patients (21/30) with DNA damage response (DDR)-related gene mutations showed a higher ORR, while patients (14/30) with tumor area positivity ≥1 (PD-L1 staining) showed a trend of high ORR, but without significant difference. The median OS, PFS, and DoR were 22.5, 10.2, and 11.0 months, respectively. The DCR was 93.3%. Further, 56.7% of patients experienced manageable grade ≥3 adverse events (AEs), commonly neutropenia (40.0%) and leukocytopenia (23.3%). In conclusion, toripalimab plus lenvatinib and GEMOX are promising first-line regimens for the treatment of advanced ICC. A phase-III, multicenter, double-blinded, randomized study to validate our findings was approved by the National Medical Products Administration (NMPA, No. 2021LP01825).Trial registration Clinical trials: NCT03951597.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Antígeno B7-H1 , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Oxaliplatino/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéuticoRESUMEN
BACKGROUND: Laparoscopic liver resection (LLR) has now been established as a safe and minimally invasive technique that is deemed feasible for treating hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). However, the role of LLR in treating combined hepatocellular-cholangiocarcinoma (cHCC-CC) patients has been rarely reported. This study aimed to assess the efficacy of LLR when compared with open liver resection (OLR) procedure for patients with cHCC-CC. METHODS: A total of 229 cHCC-CC patients who underwent hepatic resection (34 LLR and 195 OLR patients) from January 2014 to December 2018 in Zhongshan Hospital, Fudan University were enrolled and underwent a 1:2 propensity score matching (PSM) analysis between the LLR and OLR groups to compare perioperative and oncologic outcomes. Overall survival (OS) and recurrence-free survival (RFS) parameters were assessed by the log-rank test and the sensitivity analysis. RESULTS: A total of 34 LLR and 68 OLR patients were included after PSM analysis. The LLR group displayed a shorter postoperative hospital stay (6.61 vs. 8.26 days; p value < 0.001) when compared with the OLR group. No significant differences were observed in the postoperative complications' incidence or a negative surgical margin rate between the two groups (p value = 0.409 and p value = 1.000, respectively). The aspartate aminotransferase (AST), alanine aminotransferase (ALT), and inflammatory indicators in the LLR group were significantly lower than those in the OLR group on the first and third postoperative days. Additionally, OS and RFS were comparable in both the LLR and OLR groups (p value = 0.700 and p value = 0.780, respectively), and similar results were obtained by conducting a sensitivity analysis. CONCLUSION: LLR can impart less liver function damage, better inflammatory response attenuation contributing to a faster recovery, and parallel oncologic outcomes when compared with OLR. Therefore, LLR can be recommended as a safe and effective therapeutic modality for treating selected cHCC-CC patients, especially for those with small tumors in favorable location.
Asunto(s)
Carcinoma Hepatocelular , Laparoscopía , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/cirugía , Puntaje de Propensión , Estudios Retrospectivos , Hepatectomía/métodos , Laparoscopía/métodos , Complicaciones Posoperatorias/etiología , Tiempo de InternaciónRESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) is the sixth most commonly diagnosed cancer and third leading cause of cancer-related death worldwide in 2020. Exosomes derived from cancer-associated fibroblasts (CAFs-exo) can promote tumor progression in various human cancers. However, the underlying regulatory mechanism controlling how CAFs-exo can promote HCC progression remains poorly understood. METHODS: CAFs and para-cancer fibroblasts (PAFs) were isolated from HCC tissues and corresponding para-cancer tissues, then were cultured in vitro. CAFs and PAFs were characterized by immunofluorescence and western blot (WB) assays. Exosomes were isolated by ultracentrifugation, and characterized by transmission electron microscopy, nanoflow cytometry, and WB assay. The internalization of exosomes by HCC cells was observed under a fluorescence microscope. Cell Counting Kit-8 (CCK-8) assay was used to evaluate cell proliferation. Wound healing and transwell assays were used for migration and invasion experiments. RT-PCR assay was used to examine differentially expressed microRNAs (miRNAs) in exosomes and HCC cells. The TargetScan database was used to predict miRNA target genes. Hedgehog interacting protein (HHIP) expression analysis, prognostic analysis, and enrichment analysis of HHIP-related co-expressed genes were performed using the TIMER, UALCAN, Kaplan-Meier plotter, and LinkedOmics databases. RESULTS: CAFs-exo were internalized by HCC cells. CAFs-exo contributed to the aggressive phenotype of HCC cells, while inhibiting exosome secretion reversed these effects. Mechanistically, miRNAs in the DLK1-DIO3 imprinted region (miR-329-3p, miR-380-3p, miR-410-5p, miR-431-5p) were increased in HCC cells co-cultured with CAFs-exo compared with PAFs-exo. Expression of HHIP, a possible miR-431-5p target gene, was significantly downregulated in HCC cells. Low HHIP expression level in tumor tissues could predict poor prognosis in HCC patients. HHIP-related co-expressed genes were mainly associated with cell adhesion molecules. CONCLUSIONS: CAFs-exo can promote HCC progression by delivering miRNAs in the DLK1-DIO3 imprinted region to HCC cells, subsequently inhibiting HHIP expression. HHIP is a potential prognostic biomarker in HCC.
Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Glicoproteínas de Membrana , MicroARNs , Humanos , Proteínas de Unión al Calcio , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas de la Membrana/genética , MicroARNs/genética , Glicoproteínas de Membrana/genéticaRESUMEN
Purpose: We aimed to investigate the feasibility of lenvatinib plus anti-PD-1 therapy as a conversion therapy for initially unresectable hepatocellular carcinoma (HCC). Methods: Patients with initially unresectable HCC who received combined lenvatinib and anti-PD-1 antibody between May 2020 and Jan 2022 in Zhongshan Hospital were retrospectively analyzed. Tumor response and resectability were assessed by imaging every two months according to RECIST version 1.1 and modified RECIST (mRECIST) criteria. Results: A total of 107 patients were enrolled. 30 (28%) of them received conversion surgery within 90.5 (range: 53-456) days after the initiation of lenvatinib plus anti-PD-1 therapy. At baseline, the median largest tumor diameter of these 30 patients was 9.2 cm (range: 3.5-15.0 cm), 26 patients had Barcelona Clinic Liver Cancer stage B-C, and 4 had stage A. Prior to surgery, all cases displayed tumor regression and 15 patients achieved objective response. Pathological complete response (pCR) was observed in 10 patients. No severe drug-related adverse events or surgical complications were observed. After a median follow-up of 16.5 months, 28 patients survived and 11 developed tumor recurrence. Survival analysis showed patients achieving tumor response before surgery or pCR had a longer tumor-free survival. Notably, patients with microvascular invasion (MVI) had significantly higher recurrence rate and poorer overall survival than patients without. Conclusions: Lenvatinib combined with anti-PD-1 therapy represents a feasible conversion strategy for patients with initially unresectable HCC. Patients achieving tumor responses are more likely to benefit from conversion resection to access a longer term of tumor-free survival.
RESUMEN
BACKGROUND: CXCL11 has been reported to be up-regulated in hepatocellular carcinoma (HCC) tissues and cancer-associated fibroblasts (CAFs), and CAF-secreted CXCL11 has been found to promote HCC cell proliferation and migration. Knowledge on how CAFs promote HCC progression is imperative for the future design of anti-tumor drugs addressing the high rates of disease recurrence. Herein, we propose a mechanism by which LINC00152 positively regulates CXCL11 expression and, subsequently, HCC cell phenotypes and growth characteristics via miR-205-5p in CAFs. METHODS: The expression of LINC00152, miR-205-5p in HCC/non-cancerous tissues, CAFs/NFs and HCC cell lines was determined by RT-qPCR. The CXCL11 expression and secretion were determined by westernblot and ELISA. Different expressions of LINC00152, CXCL11 and miR-205-5p in CAFs were achieved by transfection with corresponding overexpression/knockdown vectors or mimics/inhibitor. The interactions among LINC00152, miR-205-5p and CXCL11 were confirmed by FISH, luciferase, AGO2 and RNA-pulldown assays. Transwell, colony formation and MTT assays were performed to assess the role of CAFs conditioned medium (CM) in HCC cell phenotype. BALB/c nude mice xenografts were used to determine the role of CAFs on HCC growth in vivo. RESULTS: We found that in vitro, CM from CAFs transfected with sh-LINC00152 dramatically suppressed HCC cell viability, colony formation and migration, and that CM from CAFs transfected with miR-205-5p inhibitor (CAF-CM (miR-205-5p inhibitor)) exerted opposite effects on HCC cell phenotypes. Exogenous overexpression of CXCL11 in CAFs or CAF-CM (miR-205-5p inhibitor) could partially attenuate the effects of LINC00152 knockdown. In contrast, CM from CAFs transfected with LINC00152 dramatically increased HCC cell viability, colony formation and migration, and CM from CAFs transfected with miR-205-5p mimics (CAF-CM (miR-205-5p mimics)) exerted opposite effects on HCC cell phenotypes. Knockdown of CXCL11 in CAFs or CAF-CM (miR-205-5p mimics) could partially attenuate the effects of LINC00152 overexpression. In vivo, LINC00152 knockdown in CAFs inhibited tumor growth in a mouse model, which could be reversed by CXCL11 overexpression in CAFs. Mechanistically, we found that LINC00152 could act as a ceRNA to counteract miR-205-5p-mediated suppression on CXCL11 by directly binding to miR-205-5p and the 3'UTR of CXCL11. CONCLUSION: Our data indicate that a LINC00152/miR-205-5p/CXCL11 axis in HCC CAFs can affect the proliferative and migrative abilities of HCC cells in vitro and HCC tumor growth in vivo.
Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Quimiocina CXCL11 , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Animales , Humanos , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Fenotipo , ARN Largo no Codificante/genéticaRESUMEN
BACKGROUND: Preoperative prediction of microvascular invasion (MVI) is critical for treatment strategy making in patients with hepatocellular carcinoma (HCC). We aimed to develop a deep learning (DL) model based on preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict the MVI status and clinical outcomes in patients with HCC. METHODS: We retrospectively included a total of 321 HCC patients with pathologically confirmed MVI status. Preoperative DCE-MRI of these patients were collected, annotated, and further analyzed by DL in this study. A predictive model for MVI integrating DL-predicted MVI status (DL-MVI) and clinical parameters was constructed with multivariate logistic regression. RESULTS: Of 321 HCC patients, 136 patients were pathologically MVI absent and 185 patients were MVI present. Recurrence-free survival (RFS) and overall survival (OS) were significantly different between the DL-predicted MVI-absent and MVI-present. Among all clinical variables, only DL-predicted MVI status and a-fetoprotein (AFP) were independently associated with MVI: DL-MVI (odds ratio [OR] = 35.738; 95% confidence interval [CI] 14.027-91.056; p < 0.001), AFP (OR = 4.634, 95% CI 2.576-8.336; p < 0.001). To predict the presence of MVI, DL-MVI combined with AFP achieved an area under the curve (AUC) of 0.824. CONCLUSIONS: Our predictive model combining DL-MVI and AFP achieved good performance for predicting MVI and clinical outcomes in patients with HCC.
Asunto(s)
Carcinoma Hepatocelular , Aprendizaje Profundo , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Imagen por Resonancia Magnética/métodos , Microvasos/diagnóstico por imagen , Microvasos/patología , Invasividad Neoplásica/patología , Estudios Retrospectivos , alfa-FetoproteínasRESUMEN
Purpose: To dissect the tumor ecosystem following immune checkpoint blockades (ICBs) in intrahepatic cholangiocarcinoma (ICC) at a single-cell level. Methods: Single-cell RNA sequencing (scRNA-seq) data of 10 ICC patients for the ICB clinical trial were extracted from GSE125449 and systematically reanalyzed. Bulk RNA-seq data of 255 ICC patients were analyzed. Infiltration levels of SPP1+CD68+ tumor-associated macrophages (TAMs) were examined by dual immunofluorescence (IF) staining in 264 resected ICC samples. The correlation between SPP1+ TAMs and clinicopathological features as well as their prognostic significance was evaluated. Results: Among the 10 patients, five received biopsy at baseline, and others were biopsied at different timings following ICBs. Single-cell transcriptomes for 5,931 cells were obtained. A tighter cellular communication network was observed in ICB-treated ICC. We found a newly emerging VEGF signaling mediated by PGF-VEGFR1 between cancer-associated fibroblasts (CAFs) and endothelial cells in ICC following ICBs. SPP1 expression was dramatically upregulated, and SPP1+ TAM gene signatures were enriched in TAMs receiving ICB therapy. We also identified SPP1+ TAMs as an independent adverse prognostic indicator for survival in ICC. Conclusion: Our analyses provide an overview of the altered tumor ecosystem in ICC treated with ICBs and highlight the potential role of targeting CAFs and SPP1+TAMs in developing a more rational checkpoint blockade-based therapy for ICC.
Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos/metabolismo , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ecosistema , Células Endoteliales/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Análisis de la Célula IndividualRESUMEN
BACKGROUND: We aimed to investigate whether improvements in the prognosis of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) who have undergone hepatectomy are associated with reductions in the liver inflammation and fibrosis by antiviral therapy (AVT). METHODS: Patients who underwent hepatectomy and re-hepatectomy for HBV-related HCC between 2010 and 2019 were divided into two groups. Histological changes in liver were compared between initial and recurrence stages within each group. Propensity score matching (PSM) analysis was performed to compare prognostic outcomes. RESULTS: After PSM, AVT group showed a significantly better prognosis than did non-AVT group (RFS: 19.1% vs. 5.8%, P = 0.001; OS: 64.0% vs. 43.2%, P < 0.001). The improvements in G and S were independent protective factors for RFS (G: P < 0.001; S: P < 0.001) and OS (G: P = 0.013; S: P < 0.001). CONCLUSIONS: The application of AVT after initial surgery improved liver inflammation and fibrosis, further benefiting long-term outcomes of patients with HBV-related HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Antivirales/uso terapéutico , Carcinoma Hepatocelular/patología , Hepatectomía , Virus de la Hepatitis B , Humanos , Cirrosis Hepática/complicaciones , Cirrosis Hepática/cirugía , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia , Pronóstico , Estudios RetrospectivosRESUMEN
BACKGROUND: Brahma-related gene 1 (BRG1) is essential for embryogenesis and cellular metabolism. A deficiency of BRG1 in vivo decreases lipid droplets, but the molecular mechanism underlying its role in lipid metabolism associated with hepatocellular carcinoma (HCC) remains unknown. AIMS: We aimed to determine the role of BRG1 in lipid metabolism in HCC. METHODS: We assessed the differential expression of BRG1 in HCC and adjacent non-tumorous tissues using tissue microarrays. We stained lipid droplets in HCC cells with Bodipy fluorescence and Oil Red O, and verified BRG1 binding to the promoter region of glycosylated lysosomal membrane protein (GLMP) using chromatin immunoprecipitation. RESULTS: The expression of GLMP, a potential lipid metabolism regulator, was suppressed by BRG1 via transcriptional activity. Knockdown of BRG1 decreased lipid droplets, increased GLMP expression and altered the phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1)/phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) pathway in HCC, which further GLMP knockdown partially restored. Thus, GLMP knockdown increased lipid droplets and differentially altered the PI3K/AKT pathway. CONCLUSIONS: Downregulating BRG1 decreased lipid droplet deposition in HCC cells by upregulating GLMP and altering the PI3K/AKT pathway. Both BRG1 and GLMP might serve as therapeutic targets for disorders associated with dysregulated lipid metabolism, such as NAFLD and NAFLD-associated HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Proteínas Adaptadoras Transductoras de Señales , Carcinoma Hepatocelular/patología , Humanos , Metabolismo de los Lípidos , Neoplasias Hepáticas/patología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genéticaRESUMEN
Little is known about the transcriptomic plasticity and adaptive mechanisms of circulating tumor cells (CTCs) during hematogeneous dissemination. Here we interrogate the transcriptome of 113 single CTCs from 4 different vascular sites, including hepatic vein (HV), peripheral artery (PA), peripheral vein (PV) and portal vein (PoV) using single-cell full-length RNA sequencing in hepatocellular carcinoma (HCC) patients. We reveal that the transcriptional dynamics of CTCs were associated with stress response, cell cycle and immune-evasion signaling during hematogeneous transportation. Besides, we identify chemokine CCL5 as an important mediator for CTC immune evasion. Mechanistically, overexpression of CCL5 in CTCs is transcriptionally regulated by p38-MAX signaling, which recruites regulatory T cells (Tregs) to facilitate immune escape and metastatic seeding of CTCs. Collectively, our results reveal a previously unappreciated spatial heterogeneity and an immune-escape mechanism of CTC, which may aid in designing new anti-metastasis therapeutic strategies in HCC.