Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Stem Cell ; 30(9): 1235-1245.e6, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683604

RESUMEN

Heterologous organ transplantation is an effective way of replacing organ function but is limited by severe organ shortage. Although generating human organs in other large mammals through embryo complementation would be a groundbreaking solution, it faces many challenges, especially the poor integration of human cells into the recipient tissues. To produce human cells with superior intra-niche competitiveness, we combined optimized pluripotent stem cell culture conditions with the inducible overexpression of two pro-survival genes (MYCN and BCL2). The resulting cells had substantially enhanced viability in the xeno-environment of interspecies chimeric blastocyst and successfully formed organized human-pig chimeric middle-stage kidney (mesonephros) structures up to embryonic day 28 inside nephric-defective pig embryos lacking SIX1 and SALL1. Our findings demonstrate proof of principle of the possibility of generating a humanized primordial organ in organogenesis-disabled pigs, opening an exciting avenue for regenerative medicine and an artificial window for studying human kidney development.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Porcinos , Animales , Mesonefro , Embrión de Mamíferos , Blastocisto , Mamíferos , Proteínas de Homeodominio
2.
Sci China Life Sci ; 65(11): 2269-2286, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35596888

RESUMEN

Inducible expression systems are indispensable for precise regulation and in-depth analysis of biological process. Binary Tet-On system has been widely employed to regulate transgenic expression by doxycycline. Previous pig models with tetracycline regulatory elements were generated through random integration. This process often resulted in uncertain expression and unpredictable phenotypes, thus hindering their applications. Here, by precise knock-in of binary Tet-On 3G elements into Rosa26 and Hipp11 locus, respectively, a double knock-in reporter pig model was generated. We characterized excellent properties of this system for controllable transgenic expression both in vitro and in vivo. Two attP sites were arranged to flank the tdTomato to switch reporter gene. Single or multiple gene replacement was efficiently and faithfully achieved in fetal fibroblasts and nuclear transfer embryos. To display the flexible application of this system, we generated a pig strain with Dox-inducing hKRASG12D expression through phiC31 integrase-mediated cassette exchange. After eight months of Dox administration, squamous cell carcinoma developed in the nose, mouth, and scrotum, which indicated this pig strain could serve as an ideal large animal model to study tumorigenesis. Overall, the established pig models with controllable and switchable transgene expression system will provide a facilitating platform for transgenic and biomedical research.


Asunto(s)
Terapia Genética , Integrasas , Masculino , Animales , Porcinos , Integrasas/genética , Integrasas/metabolismo , Transgenes , Animales Modificados Genéticamente , Expresión Génica
3.
Front Cell Dev Biol ; 10: 1097137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704203

RESUMEN

Abdominal aortic aneurysm (AAA) is pathologically characterized by intimal atherosclerosis, disruption and attenuation of the elastic media, and adventitial inflammatory infiltrates. Although all these pathological events are possibly involved in the pathogenesis of AAA, the functional roles contributed by adventitial inflammatory macrophages have not been fully documented. Recent studies have revealed that increased expression of matrix metalloproteinase-12 (MMP-12) derived from macrophages may be particularly important in the pathogenesis of both atherosclerosis and AAA. In the current study, we developed a carrageenan-induced abdominal aortic adventitial inflammatory model in hypercholesterolemic rabbits and evaluated the effect of adventitial macrophage accumulation on the aortic remodeling with special reference to the influence of increased expression of MMP-12. To accomplish this, we compared the carrageenan-induced aortic lesions of transgenic (Tg) rabbits that expressed high levels of MMP-12 in the macrophage lineage to those of non-Tg rabbits. We found that the aortic medial and adventitial lesions of Tg rabbits were greater in degree than those of non-Tg rabbits, with the increased infiltration of macrophages and prominent destruction of elastic lamellae accompanied by the frequent appearance of dilated lesions, while the intimal lesions were slightly increased. Enhanced aortic lesions in Tg rabbits were focally associated with increased dilation of the aortic lumens. RT-PCR and Western blotting revealed high levels of MMP-12 in the lesions of Tg rabbits that were accompanied by elevated levels of MMP-2 and -3, which was caused by increased number of macrophages. Our results suggest that adventitial inflammation constitutes a major stimulus to aortic remodeling and increased expression of MMP-12 secreted from adventitial macrophages plays an important role in the pathogenesis of vascular diseases such as AAA.

5.
Mol Ther ; 29(3): 1001-1015, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33221434

RESUMEN

Patients with hereditary tyrosinemia type I (HT1) present acute and irreversible liver and kidney damage during infancy. CRISPR-Cas9-mediated gene correction during infancy may provide a promising approach to treat patients with HT1. However, all previous studies were performed on adult HT1 rodent models, which cannot authentically recapitulate some symptoms of human patients. The efficacy and safety should be verified in large animals to translate precise gene therapy to clinical practice. Here, we delivered CRISPR-Cas9 and donor templates via adeno-associated virus to newborn HT1 rabbits. The lethal phenotypes could be rescued, and notably, these HT1 rabbits reached adulthood normally without 2-(2-nitro-4-trifluoromethylbenzyol)-1,3 cyclohexanedione administration and even gave birth to offspring. Adeno-associated virus (AAV)-treated HT1 rabbits displayed normal liver and kidney structures and functions. Homology-directed repair-mediated precise gene corrections and non-homologous end joining-mediated out-of-frame to in-frame corrections in the livers were observed with efficiencies of 0.90%-3.71% and 2.39%-6.35%, respectively, which appeared to be sufficient to recover liver function and decrease liver and kidney damage. This study provides useful large-animal preclinical data for rescuing hepatocyte-related monogenetic metabolic disorders with precise gene therapy.


Asunto(s)
Sistemas CRISPR-Cas , Dependovirus/genética , Edición Génica , Vectores Genéticos/administración & dosificación , Hidrolasas/genética , Tirosinemias/terapia , Animales , Animales Recién Nacidos , Reparación del ADN por Unión de Extremidades , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Terapia Genética , Riñón/metabolismo , Hígado/metabolismo , Masculino , RNA-Seq , Conejos , Tirosinemias/genética , Tirosinemias/patología
6.
J Immunol ; 205(9): 2532-2544, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32958688

RESUMEN

The NLRP3 inflammasome is associated with a variety of human diseases, including cryopyrin-associated periodic syndrome (CAPS). CAPS is a dominantly inherited disease with NLRP3 missense mutations. Currently, most studies on the NLRP3-inflammasome have been performed with mice, but the activation patterns and the signaling pathways of the mouse NLRP3 inflammasome are not always identical with those in humans. The NLRP3 inflammasome activation in pigs is similar to that in humans. Therefore, pigs with precise NLRP3-point mutations may model human CAPS more accurately. In this study, an NLRP3 gain-of-function pig model carrying a homozygous R259W mutation was generated by combining CRISPR/Cpf1-mediated somatic cell genome editing with nuclear transfer. The newborn NLRP3 R259W homozygous piglets showed early mortality, poor growth, and spontaneous systemic inflammation symptoms, including skin lesion, joint inflammation, severe contracture, and inflammation-mediated multiorgan failure. Severe myocardial fibrosis was also observed. The tissues of inflamed skins and several organs showed significantly increased expressions of NLRP3, Caspase-1, and inflammation-associated cytokines and factors (i.e., IL-1ß, TNF-α, IL-6, and IL-17). Notably, approximately half of the homozygous piglets grew up to adulthood and even gave birth to offspring. Although the F1 heterozygous piglets showed improved survival rate and normal weight gain, 39.1% (nine out of 23) of the piglets died early and exhibited spontaneous systemic inflammation symptoms. In addition, similar to homozygotes, adult heterozygotes showed increased delayed hypersensitivity response. Thus, the NLRP3 R259W pigs are similar to human CAPS and can serve as an ideal animal model to bridge the gap between rodents and humans.


Asunto(s)
Mutación con Ganancia de Función/genética , Inflamación/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Porcinos/genética , Animales , Caspasa 1/genética , Síndromes Periódicos Asociados a Criopirina/genética , Citocinas/genética , Homocigoto , Humanos , Inflamasomas/genética , Masculino , Piel/metabolismo
7.
BMC Biol ; 18(1): 131, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967664

RESUMEN

BACKGROUND: Many favorable traits of crops and livestock and human genetic diseases arise from multiple single nucleotide polymorphisms or multiple point mutations with heterogeneous base substitutions at the same locus. Current cytosine or adenine base editors can only accomplish C-to-T (G-to-A) or A-to-G (T-to-C) substitutions in the windows of target genomic sites of organisms; therefore, there is a need to develop base editors that can simultaneously achieve C-to-T and A-to-G substitutions at the targeting site. RESULTS: In this study, a novel fusion adenine and cytosine base editor (ACBE) was generated by fusing a heterodimer of TadA (ecTadAWT/*) and an activation-induced cytidine deaminase (AID) to the N- and C-terminals of Cas9 nickase (nCas9), respectively. ACBE could simultaneously induce C-to-T and A-to-G base editing at the same target site, which were verified in HEK293-EGFP reporter cell line and 45 endogenous gene loci of HEK293 cells. Moreover, the ACBE could accomplish simultaneous point mutations of C-to-T and A-to-G in primary somatic cells (mouse embryonic fibroblasts and porcine fetal fibroblasts) in an applicable efficiency. Furthermore, the spacer length of sgRNA and the length of linker could influence the dual base editing activity, which provided a direction to optimize the ACBE system. CONCLUSION: The newly developed ACBE would expand base editor toolkits and should promote the generation of animals and the gene therapy of genetic diseases with heterogeneous point mutations.


Asunto(s)
Adenina/metabolismo , Citosina/metabolismo , Embrión de Mamíferos/metabolismo , Edición Génica/instrumentación , Mutación Puntual , Animales , Feto/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Sus scrofa
8.
Nat Commun ; 10(1): 2852, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253764

RESUMEN

Cytosine base editors (CBEs) enable programmable C-to-T conversion without DNA double-stranded breaks and homology-directed repair in a variety of organisms, which exhibit great potential for agricultural and biomedical applications. However, all reported cases only involved C-to-T substitution at a single targeted genomic site. Whether C-to-T substitution is effective in multiple sites/loci has not been verified in large animals. Here, by using pigs, an important animal for agriculture and biomedicine, as the subjective animal, we showed that CBEs could efficiently induce C-to-T conversions at multiple sites/loci with the combination of three genes, including DMD, TYR, and LMNA, or RAG1, RAG2, and IL2RG, simultaneously, at the embryonic and cellular levels. CBEs also could disrupt genes (pol gene of porcine endogenous retrovirus) with dozens of copies by introducing multiple premature stop codons. With the CBEs, pigs carrying single gene or multiple gene point mutations were generated through embryo injection or nuclear transfer approach.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Mutación Puntual , Porcinos/genética , Desaminasas APOBEC-1 , Animales , Secuencia de Bases , Proteína 9 Asociada a CRISPR , ADN/genética , Técnicas de Cultivo de Embriones , Embrión de Mamíferos , Genoma , Técnicas de Transferencia Nuclear/veterinaria , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
PLoS One ; 9(10): e109728, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25360692

RESUMEN

Rabbits are commonly used as laboratory animal models to investigate human diseases and phylogenetic development. However, pluripotent stem cells that contribute to germline transmission have yet to be established in rabbits. The transcription factor Oct4, also known as Pou5f1, is considered essential for the maintenance of the pluripotency of stem cells. Hence, pluripotent cells can be identified by monitoring Oct4 expression using a well-established Oct4 promoter-based reporter system. This study developed a rabbit Oct4 promoter-based enhanced green fluorescent protein (EGFP) reporter system by transfecting pROP2-EGFP into rabbit fetal fibroblasts (RFFs). The transgenic RFFs were used as donor cells for somatic cell nuclear transfer (SCNT). The EGFP expression was detected in the blastocysts and genital ridges of SCNT fetuses. Fibroblasts and neural stem cells (NSCs) were derived from the SCNT fetuses. EGFP was also reactivated in blastocysts after the second SCNT, and induced pluripotent stem cells (iPSCs) were obtained after reprogramming using Yamanaka's factors. The results above indicated that a rabbit reporter system used to monitor the differentiating status of cells was successfully developed.


Asunto(s)
Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/fisiología , Regiones Promotoras Genéticas , Animales , Animales Modificados Genéticamente , Células Cultivadas , Embrión de Mamíferos , Femenino , Fibroblastos/citología , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Pluripotentes Inducidas , Ratones , Técnicas de Transferencia Nuclear , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Conejos , Transfección
10.
Yi Chuan ; 36(4): 360-8, 2014 Apr.
Artículo en Chino | MEDLINE | ID: mdl-24846981

RESUMEN

The lack of suitable animal model for HIV-1 infection has become a bottleneck for the development of AIDS vaccines and drugs. Wild-type rabbits can be infected by HIV-1 persistently and HIV-1 can be efficiently replicated resulting in syncytia in rabbit cell line co-expressing human CD4 and CCR5.Therefore, a rabbit highly expressing human CD4 and CCR5 may be an ideal animal model for AIDS disease study. In the present report, by using the efficient gene targeting technology, transcription activator-like effector nuclease (TALEN), we explored the feasibility of generating a HIV-1 model by knocking in human CD4 and CCR5 into rabbit genome. First we constructed two TALEN vectors targeting rabbit CCR5 gene and a vector with homologous arms. TALEN mRNAs and donor DNA were then co-injected into fertilized oocytes. After 3?5 days, 24 embryos were collected and used to conduct mutation analysis with PCR and sequencing. All the 24 embryos were detected with CCR5 knockouts and 5 were human CD4 and CCR5 knockins. Our results laid a foundation for establishing a new animal model for the study of AIDS.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , Técnicas de Sustitución del Gen/métodos , Receptores CCR5/genética , Animales , Secuencia de Bases , Vectores Genéticos/genética , Humanos , Oocitos/metabolismo , Plásmidos/genética , Conejos , Receptores CCR5/metabolismo
11.
Sci Rep ; 4: 4905, 2014 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-24809325

RESUMEN

Nitro-oleic acid (OA-NO2), acting as anti-inflammatory signaling mediators, are involved in multiple signaling pathways. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is well known as a cardiovascular risk biomarker. Our results showed that OA-NO2 downregulated the expression of Lp-PLA2 in a time- and dose-dependent manner, whereas native OA had no such effect. Furthermore, OA-NO2 could repress Lp-PLA2 expression in the peripheral blood mononuclear cells of apo CIII-transgenic (apo CIII TG) pigs, which exhibited higher Lp-PLA2 expression and activity than did wild-type (WT) pigs. OA-NO2 inhibited Lp-PLA2 expression in macrophages, independent of nitric oxide formation and PPARγ-activation. However, OA-NO2 downregulates Lp-PLA2 by inhibiting the p42/p44 mitogen-activated protein kinase (MAPK) and the nuclear factor κB (NFκB) pathways. When used to mediate anti-inflammatory signaling, the regulation of inflammatory cytokines and SOD by OA-NO2 might be associated with the reduction of Lp-PLA2. These results suggested that OA-NO2 might exert a vascular-protective effect partially via Lp-PLA2 inhibition.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Ácido Oléico/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Citocinas/metabolismo , Regulación hacia Abajo , Humanos , Mediadores de Inflamación/metabolismo , Óxido Nítrico/metabolismo , PPAR gamma/metabolismo , Superóxido Dismutasa/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA