Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 191(4): 2170-2184, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36695030

RESUMEN

In eukaryotes, mitochondrial ATP is mainly produced by the oxidative phosphorylation (OXPHOS) system, which is composed of 5 multiprotein complexes (complexes I-V). Analyses of the OXPHOS system by native gel electrophoresis have revealed an organization of OXPHOS complexes into supercomplexes, but their roles and assembly pathways remain unclear. In this study, we characterized an atypical mitochondrial ferredoxin (mitochondrial ferredoxin-like, mFDX-like). This protein was previously found to be part of the bridge domain linking the matrix and membrane arms of the complex I. Phylogenetic analysis suggested that the Arabidopsis (Arabidopsis thaliana) mFDX-like evolved from classical mitochondrial ferredoxins (mFDXs) but lost one of the cysteines required for the coordination of the iron-sulfur (Fe-S) cluster, supposedly essential for the electron transfer function of FDXs. Accordingly, our biochemical study showed that AtmFDX-like does not bind an Fe-S cluster and is therefore unlikely to be involved in electron transfer reactions. To study the function of mFDX-like, we created deletion lines in Arabidopsis using a CRISPR/Cas9-based strategy. These lines did not show any abnormal phenotype under standard growth conditions. However, the characterization of the OXPHOS system demonstrated that mFDX-like is important for the assembly of complex I and essential for the formation of complex I-containing supercomplexes. We propose that mFDX-like and the bridge domain are required for the correct conformation of the membrane arm of complex I that is essential for the association of complex I with complex III2 to form supercomplexes.


Asunto(s)
Arabidopsis , Ferredoxinas , Ferredoxinas/genética , Ferredoxinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Filogenia , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo
2.
Biochim Biophys Acta Bioenerg ; 1862(7): 148425, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33785316

RESUMEN

The mitochondrial ATP synthase is producing most of the energy required to support eucaryotic life. It is located in the mitochondrial inner-membrane and couples the dissipation of the proton gradient produced by the electron transfer chain with ATP production. It is composed of two domains, the F1 domain located in the matrix and the FO domain embedded in the inner membrane. The mitochondrial ATP synthase belongs to the F-type ATP synthase family together with bacterial and chloroplastic enzymes. The composition of the mitochondrial ATP synthase is well conserved across species, except in plants where several subunits found in opisthokonts were not identified and additional, plant-specific, subunits were found. The assembly of the F-type ATP synthase has been extensively studied in bacteria, yeast and mammals. The overall assembly pattern is conserved but species-specific steps have been identified. In plant, little is known about the assembly of the mitochondrial ATP synthase. We have mined our previously published complexome profiling dataset in order to identity assembly steps of the ATP synthase in the reference plant Arabidopsis thaliana. Several assembly intermediates were identified and we propose a model for the assembly pathway of the ATP synthase of plant mitochondria. In addition, combining complexome profiling with homology searches, we found that the previously described plant-specific subunits are actually present in other organisms. Overall, our work show that the subunit composition and the assembly pathway of the plant mitochondria ATP synthase are mostly conserved with other mitochondrial enzymes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteoma/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA