Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Dev Biol ; 506: 72-84, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38110169

RESUMEN

The DGCR8 gene, encoding a critical miRNA processing protein, maps within the hemizygous region in patients with 22q11.2 deletion syndrome. Most patients have malformations of the cardiac outflow tract that is derived in part from the anterior second heart field (aSHF) mesoderm. To understand the function of Dgcr8 in the aSHF, we inactivated it in mice using Mef2c-AHF-Cre. Inactivation resulted in a fully penetrant persistent truncus arteriosus and a hypoplastic right ventricle leading to lethality by E14.5. To understand the molecular mechanism for this phenotype, we performed gene expression profiling of the aSHF and the cardiac outflow tract with right ventricle in conditional null versus normal mouse littermates at stage E9.5 prior to morphology changes. We identified dysregulation of mRNA gene expression, of which some are relevant to cardiogenesis. Many pri-miRNA genes were strongly increased in expression in mutant embryos along with reduced expression of mature miRNA genes. We further examined the individual, mature miRNAs that were decreased in expression along with pri-miRNAs that were accumulated that could be direct effects due to loss of Dgcr8. Among these genes, were miR-1a, miR-133a, miR-134, miR143 and miR145a, which have known functions in heart development. These early mRNA and miRNA changes may in part, explain the first steps that lead to the resulting phenotype in Dgcr8 aSHF conditional mutant embryos.


Asunto(s)
Ventrículos Cardíacos , MicroARNs , Humanos , Ratones , Animales , Ventrículos Cardíacos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Mamíferos/metabolismo , ARN Mensajero
2.
Hum Mol Genet ; 31(8): 1197-1215, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686881

RESUMEN

CRK and CRKL encode cytoplasmic adaptors that contribute to the etiology of congenital heart disease. Neural crest cells (NCCs) are required for cardiac outflow tract (OFT) septation and aortic arch formation. The roles of Crk/Crkl in NCCs during mouse cardiovascular development remain unknown. To test this, we inactivated Crk and/or Crkl in NCCs. We found that the loss of Crk, rather than Crkl, in NCCs resulted in double outlet right ventricle, while loss of both Crk/Crkl in NCCs resulted in severe defects with earlier lethality due to failed OFT septation and severe dilation of the pharyngeal arch arteries (PAAs). We found that these defects are due to altered cell morphology resulting in reduced localization of NCCs to the OFT and failed integrity of the PAAs, along with reduced expression of Integrin signaling genes. Further, molecular studies identified reduced differentiation of vascular smooth muscle cells that may in part be due to altered Notch signaling. Additionally, there is increased cellular stress that leads to modest increase in apoptosis. Overall, this explains the mechanism for the Crk/Crkl phenotype.


Asunto(s)
Cardiopatías Congénitas , Cresta Neural , Animales , Diferenciación Celular/genética , Cardiopatías Congénitas/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Cresta Neural/metabolismo , Proteínas Proto-Oncogénicas c-crk/metabolismo , Transducción de Señal/genética
3.
Nat Commun ; 12(1): 6645, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789765

RESUMEN

The poles of the heart and branchiomeric muscles of the face and neck are formed from the cardiopharyngeal mesoderm within the pharyngeal apparatus. They are disrupted in patients with 22q11.2 deletion syndrome, due to haploinsufficiency of TBX1, encoding a T-box transcription factor. Here, using single cell RNA-sequencing, we now identify a multilineage primed population within the cardiopharyngeal mesoderm, marked by Tbx1, which has bipotent properties to form cardiac and branchiomeric muscle cells. The multilineage primed cells are localized within the nascent mesoderm of the caudal lateral pharyngeal apparatus and provide a continuous source of cardiopharyngeal mesoderm progenitors. Tbx1 regulates the maturation of multilineage primed progenitor cells to cardiopharyngeal mesoderm derivatives while restricting ectopic non-mesodermal gene expression. We further show that TBX1 confers this balance of gene expression by direct and indirect regulation of enriched genes in multilineage primed progenitors and downstream pathways, partly through altering chromatin accessibility, the perturbation of which can lead to congenital defects in individuals with 22q11.2 deletion syndrome.


Asunto(s)
Región Branquial/citología , Mesodermo/citología , Miocardio/citología , Proteínas de Dominio T Box/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Región Branquial/embriología , Región Branquial/metabolismo , Diferenciación Celular , Linaje de la Célula , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Corazón/embriología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo , Proteínas de Dominio T Box/genética
4.
Hum Mol Genet ; 27(11): 1847-1857, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29509905

RESUMEN

Non-allelic homologous recombination events on chromosome 22q11.2 during meiosis can result in either the deletion (22q11.2DS) or duplication (22q11.2DupS) syndrome. Although the spectrum and frequency of congenital heart disease (CHD) are known for 22q11.2DS, there is less known for 22q11.2DupS. We now evaluated cardiac phenotypes in 235 subjects with 22q11.2DupS including 102 subjects we collected and 133 subjects that were previously reported as a confirmation and found 25% have CHD, mostly affecting the cardiac outflow tract (OFT). Previous studies have shown that global loss or gain of function (LOF; GOF) of mouse Tbx1, encoding a T-box transcription factor mapping to the region of synteny to 22q11.2, results in similar OFT defects. To further evaluate Tbx1 function in the progenitor cells forming the cardiac OFT, termed the anterior heart field, Tbx1 was overexpressed using the Mef2c-AHF-Cre driver (Tbx1 GOF). Here we found that all resulting conditional GOF embryos had a persistent truncus arteriosus (PTA), similar to what was previously reported for conditional Tbx1 LOF mutant embryos. To understand the basis for the PTA in the conditional GOF embryos, we found that proliferation in the Mef2c-AHF-Cre lineage cells before migrating to the heart, was reduced and critical genes were oppositely changed in this tissue in Tbx1 GOF embryos versus conditional LOF embryos. These results suggest that a major function of TBX1 in the AHF is to maintain the normal balance of expression of key cardiac developmental genes required to form the aorta and pulmonary trunk, which is disrupted in 22q11.2DS and 22q11.2DupS.


Asunto(s)
Desarrollo Embrionario/genética , Cardiopatías Congénitas/genética , Corazón/crecimiento & desarrollo , Proteínas de Dominio T Box/genética , Anomalías Múltiples/genética , Anomalías Múltiples/fisiopatología , Animales , Aorta/fisiopatología , Duplicación Cromosómica/genética , Cromosomas Humanos Par 22/genética , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/fisiopatología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica/genética , Corazón/fisiopatología , Cardiopatías Congénitas/patología , Recombinación Homóloga/genética , Humanos , Meiosis/genética , Ratones , Mutación , Tronco Arterial Persistente/genética , Tronco Arterial Persistente/fisiopatología
5.
PLoS Genet ; 13(3): e1006687, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28346476

RESUMEN

The 22q11.2 deletion syndrome (22q11.2DS; velo-cardio-facial syndrome; DiGeorge syndrome) is a congenital anomaly disorder in which haploinsufficiency of TBX1, encoding a T-box transcription factor, is the major candidate for cardiac outflow tract (OFT) malformations. Inactivation of Tbx1 in the anterior heart field (AHF) mesoderm in the mouse results in premature expression of pro-differentiation genes and a persistent truncus arteriosus (PTA) in which septation does not form between the aorta and pulmonary trunk. Canonical Wnt/ß-catenin has major roles in cardiac OFT development that may act upstream of Tbx1. Consistent with an antagonistic relationship, we found the opposite gene expression changes occurred in the AHF in ß-catenin loss of function embryos compared to Tbx1 loss of function embryos, providing an opportunity to test for genetic rescue. When both alleles of Tbx1 and one allele of ß-catenin were inactivated in the Mef2c-AHF-Cre domain, 61% of them (n = 34) showed partial or complete rescue of the PTA defect. Upregulated genes that were oppositely changed in expression in individual mutant embryos were normalized in significantly rescued embryos. Further, ß-catenin was increased in expression when Tbx1 was inactivated, suggesting that there may be a negative feedback loop between canonical Wnt and Tbx1 in the AHF to allow the formation of the OFT. We suggest that alteration of this balance may contribute to variable expressivity in 22q11.2DS.


Asunto(s)
Anomalías Cardiovasculares/genética , Síndrome de DiGeorge/genética , Modelos Animales de Enfermedad , Proteínas de Dominio T Box/genética , beta Catenina/genética , Animales , Apoptosis/genética , Anomalías Cardiovasculares/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/genética , Síndrome de DiGeorge/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Miocitos Cardíacos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Dominio T Box/metabolismo , Tronco Arterial/citología , Tronco Arterial/embriología , Tronco Arterial/metabolismo , beta Catenina/metabolismo
6.
N Engl J Med ; 376(8): 742-754, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28121514

RESUMEN

BACKGROUND: The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. METHODS: We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. RESULTS: We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10-14). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. CONCLUSIONS: We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Deleción Cromosómica , Síndrome de DiGeorge/genética , Haploinsuficiencia , Riñón/anomalías , Proteínas Nucleares/genética , Sistema Urinario/anomalías , Adolescente , Animales , Niño , Cromosomas Humanos Par 22 , Exoma , Femenino , Heterocigoto , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Modelos Animales , Análisis de Secuencia de ADN , Adulto Joven , Pez Cebra
7.
Sci Rep ; 6: 35810, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27808166

RESUMEN

During pregnancy, luminal and basal epithelial cells of the adult mammary gland proliferate and differentiate resulting in remodeling of the adult gland. While pathways that control this process have been characterized in the gland as a whole, the contribution of specific cell subtypes, in particular the basal compartment, remains largely unknown. Basal cells provide structural and contractile support, however they also orchestrate the communication between the stroma and the luminal compartment at all developmental stages. Using RNA-seq, we show that basal cells are extraordinarily transcriptionally dynamic throughout pregnancy when compared to luminal cells. We identified gene expression changes that define specific basal functions acquired during development that led to the identification of novel markers. Enrichment analysis of gene sets from 24 mouse models for breast cancer pinpoint to a potential new function for insulin-like growth factor 1 (Igf1r) in the basal epithelium during lactogenesis. We establish that ß-catenin signaling is activated in basal cells during early pregnancy, and demonstrate that this activity is mediated by lysophosphatidic acid receptor 3 (Lpar3). These findings identify novel pathways active during functional maturation of the adult mammary gland.


Asunto(s)
Linaje de la Célula/genética , Células Epiteliales/citología , Lactancia/fisiología , Glándulas Mamarias Animales/citología , Organogénesis/fisiología , Animales , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones , Embarazo , beta Catenina/genética , beta Catenina/metabolismo
8.
Hum Genet ; 135(3): 273-85, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26742502

RESUMEN

The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS; MIM #192430; 188400) is the most common microdeletion syndrome. The phenotypic presentation of 22q11DS is highly variable; approximately 60-75 % of 22q11DS patients have been reported to have a congenital heart defect (CHD), mostly of the conotruncal type, and/or aortic arch defect. The etiology of the cardiac phenotypic variability is not currently known for the majority of patients. We hypothesized that rare copy number variants (CNVs) outside the 22q11.2 deleted region may modify the risk of being born with a CHD in this sensitized population. Rare CNV analysis was performed using Affymetrix SNP Array 6.0 data from 946 22q11DS subjects with CHDs (n = 607) or with normal cardiac anatomy (n = 339). Although there was no significant difference in the overall burden of rare CNVs, an overabundance of CNVs affecting cardiac-related genes was detected in 22q11DS individuals with CHDs. When the rare CNVs were examined with regard to gene interactions, specific cardiac networks, such as Wnt signaling, appear to be overrepresented in 22q11DS CHD cases but not 22q11DS controls with a normal heart. Collectively, these data suggest that CNVs outside the 22q11.2 region may contain genes that modify risk for CHDs in some 22q11DS patients.


Asunto(s)
Variaciones en el Número de Copia de ADN , Síndrome de DiGeorge/genética , Cardiopatías Congénitas/genética , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Síndrome de DiGeorge/diagnóstico , Técnicas de Genotipaje , Cardiopatías Congénitas/diagnóstico , Humanos
9.
Am J Hum Genet ; 96(5): 753-64, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25892112

RESUMEN

The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the risk of being born with a CHD in this sensitized population. Genotyping with Affymetrix SNP Array 6.0 was performed on two groups of subjects with 22q11DS separated by time of ascertainment and processing. CNV analysis was completed on a total of 949 subjects (cohort 1, n = 562; cohort 2, n = 387), 603 with CHDs (cohort 1, n = 363; cohort 2, n = 240) and 346 with normal cardiac anatomy (cohort 1, n = 199; cohort 2, n = 147). Our analysis revealed that a duplication of SLC2A3 was the most frequent CNV identified in the first cohort. It was present in 18 subjects with CHDs and 1 subject without (p = 3.12 × 10(-3), two-tailed Fisher's exact test). In the second cohort, the SLC2A3 duplication was also significantly enriched in subjects with CHDs (p = 3.30 × 10(-2), two-tailed Fisher's exact test). The SLC2A3 duplication was the most frequent CNV detected and the only significant finding in our combined analysis (p = 2.68 × 10(-4), two-tailed Fisher's exact test), indicating that the SLC2A3 duplication might serve as a genetic modifier of CHDs and/or aortic arch anomalies in individuals with 22q11DS.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Síndrome de DiGeorge/genética , Transportador de Glucosa de Tipo 3/genética , Cardiopatías Congénitas/genética , Adulto , Aorta Torácica/fisiopatología , Síndrome de DiGeorge/fisiopatología , Femenino , Genotipo , Cardiopatías Congénitas/fisiopatología , Humanos , Masculino , Polimorfismo de Nucleótido Simple
10.
Am J Hum Genet ; 96(2): 235-44, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25658046

RESUMEN

The human chromosome 22q11.2 region is susceptible to rearrangements during meiosis leading to velo-cardio-facial/DiGeorge/22q11.2 deletion syndrome (22q11DS) characterized by conotruncal heart defects (CTDs) and other congenital anomalies. The majority of individuals have a 3 Mb deletion whose proximal region contains the presumed disease-associated gene TBX1 (T-box 1). Although a small subset have proximal nested deletions including TBX1, individuals with distal deletions that exclude TBX1 have also been identified. The deletions are flanked by low-copy repeats (LCR22A, B, C, D). We describe cardiac phenotypes in 25 individuals with atypical distal nested deletions within the 3 Mb region that do not include TBX1 including 20 with LCR22B to LCR22D deletions and 5 with nested LCR22C to LCR22D deletions. Together with previous reports, 12 of 37 (32%) with LCR22B-D deletions and 5 of 34 (15%) individuals with LCR22C-D deletions had CTDs including tetralogy of Fallot. In the absence of TBX1, we hypothesized that CRKL (Crk-like), mapping to the LCR22C-D region, might contribute to the cardiac phenotype in these individuals. We created an allelic series in mice of Crkl, including a hypomorphic allele, to test for gene expression effects on phenotype. We found that the spectrum of heart defects depends on Crkl expression, occurring with analogous malformations to that in human individuals, suggesting that haploinsufficiency of CRKL could be responsible for the etiology of CTDs in individuals with nested distal deletions and might act as a genetic modifier of individuals with the typical 3 Mb deletion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Cromosomas Humanos Par 22/genética , Cardiopatías Congénitas/genética , Proteínas Nucleares/genética , Fenotipo , Duplicaciones Segmentarias en el Genoma/genética , Eliminación de Secuencia/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Ecocardiografía , Cardiopatías Congénitas/patología , Humanos , Hibridación Fluorescente in Situ , Ratones , Proteínas Nucleares/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Hum Mol Genet ; 23(16): 4215-31, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24705356

RESUMEN

Velo-cardio-facial/DiGeorge syndrome, also known as 22q11.2 deletion syndrome, is a congenital anomaly disorder characterized by craniofacial anomalies including velo-pharyngeal insufficiency, facial muscle hypotonia and feeding difficulties, in part due to hypoplasia of the branchiomeric muscles. Inactivation of both alleles of mouse Tbx1, encoding a T-box transcription factor, deleted on chromosome 22q11.2, results in reduction or loss of branchiomeric muscles. To identify downstream pathways, we performed gene profiling of microdissected pharyngeal arch one (PA1) from Tbx1(+/+) and Tbx1(-/-) embryos at stages E9.5 (somites 20-25) and E10.5 (somites 30-35). Basic helix-loop-helix (bHLH) transcription factors were reduced, while secondary heart field genes were increased in expression early and were replaced by an increase in expression of cellular stress response genes later, suggesting a change in gene expression patterns or cell populations. Lineage tracing studies using Mesp1(Cre) and T-Cre drivers showed that core mesoderm cells within PA1 were present at E9.5 but were greatly reduced by E10.5 in Tbx1(-/-) embryos. Using Tbx1(Cre) knock-in mice, we found that cells are lost due to apoptosis, consistent with increase in expression of cellular stress response genes at E10.5. To determine whether Tbx1 is required autonomously in the core mesoderm, we used Mesp1(Cre) and T-Cre mesodermal drivers in combination with inactivate Tbx1 and found reduction or loss of branchiomeric muscles from PA1. These mechanistic studies inform us that Tbx1 is required upstream of key myogenic genes needed for core mesoderm cell survival and fate, between E9.5 and E10.5, resulting in formation of the branchiomeric muscles.


Asunto(s)
Diferenciación Celular/genética , Masticación/genética , Músculos/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Animales , Apoptosis/genética , Supervivencia Celular/genética , Desarrollo Embrionario/genética , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Faringe/metabolismo
12.
Mol Reprod Dev ; 75(1): 17-25, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17546584

RESUMEN

Transcription in bovine oocytes: The goal of this study was to unravel the dynamics of transcripts thought to be critically involved in oocyte maturation. The relative abundance (RA) of DYNLL1 (cytoplasmic dynein light chain LC8), DYNC1I1 (cytoplasmic dynein 1 intermediate chain), DCTN1 (dynactin 1; pGlued homolog, the activator of the cytoplasmic dynein complex 1), PMSB1 (proteasome beta subunit 1), PMSA4 (proteasome alfa subunit 4), PAP (poly-A polymerase) and Cx43 (connexin 43) were determined by semi-quantitative endpoint RT-PCR at different stages of IVM, that is, GV, GVBD, MI and MII in oocytes collected from follicles of two different size categories, that is, <2 mm and 2-8 mm. The RA of DYNLL1 and DYNC1I1 were significantly higher in immature oocytes from bigger follicles than in oocytes from small follicles. Messenger RNA expression levels were similar for DCTN1, PMSB1, PMSA4, PAP, and Cx43 in the two groups during the maturation process. RA of DYNLL1, DYNC1I1 and PMSB1 decreased significantly during IVM in oocytes from follicles 2 to 8 mm. The RA for DYNLL1 was significantly higher in GVBD and MI in the oocytes from follicles 2 to 8 mm in size compared to the other group. The higher mRNA expression of DYNLL1 and DYNC1I1 and the diverging dynamics of DYNLL1, DYNC1I1, and PMSB1 mRNA expression during IVM in oocytes from the different follicle categories could be related to the developmental capacity, that is, development to blastocysts after IVF. The differences found between groups of oocytes could serve as a marker to assess the developmental capacity of bovine oocytes.


Asunto(s)
Bovinos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Oocitos/crecimiento & desarrollo , Folículo Ovárico/crecimiento & desarrollo , ARN Mensajero/metabolismo , Animales , Bovinos/genética , Femenino , Oocitos/metabolismo , Folículo Ovárico/anatomía & histología , Folículo Ovárico/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA