Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
ACS Appl Nano Mater ; 6(23): 21671-21678, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38835900

RESUMEN

Boron vacancies (VB-) in hexagonal boron -nitride (hBN) have sparked great interest in recent years due to their optical and spin properties. Since hBN can be readily integrated into devices where it interfaces a huge variety of other 2D materials, boron vacancies may serve as a precise sensor which can be deployed at very close proximity to many important materials systems. Boron vacancy defects may be produced by a number of existing methods, the use of which may depend on the final application. Any method should reproducibly generate defects with controlled density and desired pattern. To date, however, detailed studies of such methods are missing. In this paper, we study various techniques for the preparation of hBN flakes from bulk crystals and relevant postprocessing treatments, namely, focused ion beam (FIB) implantation, for creation of VB-s as a function of flake thickness and defect concentrations. We find that flake thickness plays an important role when optimizing implantation parameters, while careful sample cleaning proved important to achieve consistent results.

2.
ACS Appl Electron Mater ; 5(12): 6603-6610, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38162528

RESUMEN

Spin-based applications of the negatively charged nitrogen-vacancy (NV) center in diamonds require an efficient spin readout. One approach is the spin-to-charge conversion (SCC), relying on mapping the spin states onto the neutral (NV0) and negative (NV-) charge states followed by a subsequent charge readout. With high charge-state stability, SCC enables extended measurement times, increasing precision and minimizing noise in the readout compared to the commonly used fluorescence detection. Nanoscale sensing applications, however, require shallow NV centers within a few nanometers distance from the surface where surface related effects might degrade the NV charge state. In this article, we investigate the charge state initialization and stability of single NV centers implanted ≈5 nm below the surface of a flat diamond plate. We demonstrate the SCC protocol on four shallow NV centers suitable for nanoscale sensing, obtaining a reduced readout noise of 5-6 times the spin-projection noise limit. We investigate the general applicability of the SCC for shallow NV centers and observe a correlation between the NV charge-state stability and readout noise. Coating the diamond with glycerol improves both the charge initialization and stability. Our results reveal the influence of the surface-related charge environment on the NV charge properties and motivate further investigations to functionalize the diamond surface with glycerol or other materials for charge-state stabilization and efficient spin-state readout of shallow NV centers suitable for nanoscale sensing.

3.
Opt Express ; 28(5): 7475-7487, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32225974

RESUMEN

Quantum emitters in hexagonal boron nitride (hBN) have attracted significant interest due to their bright and narrowband photon emission even at room temperature. The wide-bandgap two-dimensional material incorporates crystal defects of yet-unknown configuration, introducing discrete energy levels with radiative transition frequencies in the visible spectral range. The commonly observed high brightness together with the moderate fluorescence lifetime indicates a high quantum efficiency, but the exact dynamics and the underlying energy level structure remain elusive. In this study we present a systematic and detailed analysis of the photon statistics recorded for several individual emitters. We extract the individual decay rates by modeling the second-order correlation functions using a set of rate equations based on an energy level scheme involving long-lived states. Our analysis clearly indicates excitation-power-dependent non-radiative couplings to at least two metastable levels and confirms a near unity quantum efficiency.

4.
Opt Express ; 24(24): 27715-27725, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27906340

RESUMEN

It is generally accepted that nitrogen-vacancy (NV) defects in bulk diamond are bright sources of luminescence. However, the exact value of their internal quantum efficiency (IQE) has not been measured so far. Here we use an implementation of Drexhage's scheme to quantify the IQE of shallow-implanted NV defects in a single-crystal bulk diamond. Using a spherical metallic mirror with a large radius of curvature compared to the optical spot size, we perform calibrated modifications of the local density of states around NV defects and observe the change of their total decay rate, which is further used for IQE quantification. We also show that at the excitation wavelength of 532 nm, photo-induced relaxation cannot be neglected even at moderate excitation powers well below the saturation level. For NV defects shallow implanted 4.5 ± 1 and 8 ± 2 nm below the diamond surface, we determine the quantum efficiency to be 0.70 ± 0.07 and 0.82 ± 0.08, respectively.

5.
Sci Rep ; 6: 28448, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27328635

RESUMEN

Random-phase metasurfaces, in which the constituents scatter light with random phases, have the property that an incident plane wave will diffusely scatter, hereby leading to a complex far-field response that is most suitably described by statistical means. In this work, we present and exemplify the statistical description of the far-field response, particularly highlighting how the response for polarised and unpolarised light might be alike or different depending on the correlation of scattering phases for two orthogonal polarisations. By utilizing gap plasmon-based metasurfaces, consisting of an optically thick gold film overlaid by a subwavelength thin glass spacer and an array of gold nanobricks, we design and realize random-phase metasurfaces at a wavelength of 800 nm. Optical characterisation of the fabricated samples convincingly demonstrates the diffuse scattering of reflected light, with statistics obeying the theoretical predictions. We foresee the use of random-phase metasurfaces for camouflage applications and as high-quality reference structures in dark-field microscopy, while the control of the statistics for polarised and unpolarised light might find usage in security applications. Finally, by incorporating a certain correlation between scattering by neighbouring metasurface constituents new types of functionalities can be realised, such as a Lambertian reflector.

6.
Opt Express ; 24(8): 8266-79, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27137265

RESUMEN

The potential of graphene in plasmonic electro-optical waveguide modulators has been investigated in detail by finite-element method modelling of various widely used plasmonic waveguiding configurations. We estimated the maximum possible modulation depth values one can achieve with plasmonic devices operating at telecom wavelengths and exploiting the optical Pauli blocking effect in graphene. Conclusions and guidelines for optimization of modulation/intrinsic loss trade-off have been provided and generalized for any graphene-based plasmonic waveguide modulators, which should help in consideration and design of novel active-plasmonic devices.

7.
Opt Express ; 24(5): 4582-4590, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29092285

RESUMEN

Propagation of bound plasmon-polariton modes along 30-nm-thin gold strips on a silica substrate at the free-space wavelength of 1500 nm is investigated both theoretically and experimentally when decreasing the strip width from 1500 nm down to the aspect-ratio limited width of 30 nm, which ensures deep subwavelength mode confinement. The main mode characteristics (effective mode index, propagation length, and mode profile) are determined from the experimental amplitude- and phase-resolved near-field images for various strip widths (from 30 to 1500 nm), and compared to numerical simulations. The mode supported by the narrowest strip is found to be laterally confined within ~ 100 nm at the air side, indicating that the realistic limit for radiation nanofocusing in air using tapered metal strips is ~ λ/15.

8.
Nano Lett ; 15(12): 8148-54, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26551324

RESUMEN

Strongly confined surface plasmon-polariton modes can be used for efficiently delivering the electromagnetic energy to nanosized volumes by reducing the cross sections of propagating modes far beyond the diffraction limit, that is, by nanofocusing. This process results in significant local-field enhancement that can advantageously be exploited in modern optical nanotechnologies, including signal processing, biochemical sensing, imaging, and spectroscopy. Here, we propose, analyze, and experimentally demonstrate on-chip nanofocusing followed by impedance-matched nanowire antenna excitation in the end-fire geometry at telecom wavelengths. Numerical and experimental evidence of the efficient excitation of dipole and quadrupole (dark) antenna modes are provided, revealing underlying physical mechanisms and analogies with the operation of plane-wave Fabry-Pérot interferometers. The unique combination of efficient nanofocusing and nanoantenna resonant excitation realized in our experiments offers a major boost to the field intensity enhancement up to ∼12000, with the enhanced field being evenly distributed over the gap volume of 30 × 30 × 10 nm(3), and promises thereby a variety of useful on-chip functionalities within sensing, nonlinear spectroscopy and signal processing.

9.
Opt Lett ; 40(10): 2429-32, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26393757

RESUMEN

We report a novel design of a compact wavelength add-drop multiplexer utilizing dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs). The DLSPPW-based configuration exploits routing properties of directional couplers and filtering abilities of Bragg gratings. We present practical realization of a 20-µm-long device operating at telecom wavelengths that can reroute optical signals separated by approximately 70 nm in the wavelength band. We characterize the performance of the fabricated structures using scanning near-field optical microscopy as well as leakage-radiation microscopy and support our findings with numerical simulations.

10.
Nat Commun ; 6: 7883, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26249363

RESUMEN

Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

11.
Nano Lett ; 15(1): 476-80, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25474586

RESUMEN

We report a novel approach for on-chip electrical detection of the radiation guided by dielectric-loaded surface plasmon polariton waveguides (DLSPPW) and DLSPPW-based components. The detection is realized by fabricating DLSPPW components on the surface of a gold (Au) pad supported by a silicon (Si) substrate supplied with aluminum pads facilitating electrical connections, with the gold pad being perforated in a specific location below the DLSPPWs in order to allow a portion of the DLSPPW-guided radiation to leak into the Si-substrate, where it is absorbed and electrically detected. We present two-dimensional photocurrent maps obtained when the laser beam is scanning across the gold pad containing the fabricated DLSPPW components that are excited via grating couplers located at the DLSPPW tapered terminations. By comparing photocurrent signals obtained when scanning over a DLSPPW straight waveguide with those related to a DLSPPW racetrack resonator, we first determine the background signal level and then the corrected DLSPPW resonator spectral response, which is found consistent with that obtained from full wave numerical simulations. The approach developed can be extended to other plasmonic waveguide configurations and advantageously used for rapid characterization of complicated plasmonic circuits.

12.
Nano Lett ; 14(3): 1659-64, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24524631

RESUMEN

We demonstrate the highly efficient (>50%) conversion of freely propagating light to channel plasmon-polaritons (CPPs) in gold V-groove waveguides using compact 1.6 µm long waveguide-termination coupling mirrors. Our straightforward fabrication process, involving UV-lithography and crystallographic silicon etching, forms the coupling mirrors innately and ensures exceptional-quality, wafer-scale device production. We tailor the V-shaped profiles by thermal silicon oxidation in order to shift initially wedge-located modes downward into the V-grooves, resulting in well-confined CPPs suitable for nanophotonic applications.

13.
Sci Rep ; 3: 2155, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23831621

RESUMEN

In the quest to miniaturise photonics, it is of paramount importance to control light at the nanoscale. We reveal the main physical mechanism responsible for operation of gap plasmon-based gradient metasurfaces, comprising a periodic arrangement of metal nanobricks, and suggest that two degrees of freedom in the nanobrick geometry allow one to independently control the reflection phases of orthogonal light polarisations. We demonstrate, both theoretically and experimentally, how orthogonal linear polarisations of light at wavelengths close to 800 nm can be manipulated independently, efficiently and in a broad wavelength range by realising polarisation beam splitters and polarisation-independent beam steering, showing at the same time the robustness of metasurface designs towards fabrication tolerances. The presented approach establishes a new class of compact optical components, viz., plasmonic metasurfaces with controlled gradient birefringence, with no dielectric counterparts. It can straightforwardly be adapted to realise new optical components with hitherto inaccessible functionalities.

14.
Opt Express ; 21(7): 8799-807, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23571969

RESUMEN

Directional couplers (DCs) based on long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) operating at telecom wavelengths are studied both numerically and experimentally. The investigated LR-DLSPPWs are formed by ~1.2-µm-high and 1-µm-wide polymer ridges fabricated atop of 15-nm-thick and 500-nm-wide gold stripes supported by a 288-nm-thick Ormoclear polymer deposited on a low-index (n(s) ≈1.34) layer of Cytop. DC structures consisting of sine-shaped S-bends (having an offset of ~10 µm over a distance of ~20 µm) and ~100-µm-long parallel LR-DLSPPWs with a center-to-center separation of 2 µm are characterized using scanning near-field microscopy. The experimentally obtained values of the propagation length (~400 µm), S-bend loss (~4 dB) and coupling length (~100 µm) are found in good agreement with the numerical simulations, indicating a significant potential of LR-DLSPPWs for the realization of various plasmonic components.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Telecomunicaciones/instrumentación , Impedancia Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo
15.
Opt Lett ; 38(6): 875-7, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23503245

RESUMEN

We report on the experimental demonstration of detuned-resonator induced transparency in the near-infrared (~800 nm) using two detuned racetrack resonators side-coupled to a bus waveguide. Both resonators and the bus waveguide are in the form of dielectric-loaded surface plasmon polariton waveguides. Leakage radiation microscopy imaging is employed to measure transmission spectra, featuring local maxima at intermediate wavelengths with asymmetrical profiles that are found in good agreement with full-wave numerical simulation results.

16.
Opt Express ; 19(16): 15155-61, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21934877

RESUMEN

We demonstrate the use of organic nanofibers, composed of self-assembled organic molecules, as a dielectric medium for dielectric-loaded surface plasmon polariton waveguides at near-infrared wavelengths. We successfully exploit a metallic grating coupler to excite the waveguiding mode and characterize dispersion properties of such waveguides using leakage-radiation microscopy.


Asunto(s)
Microscopía/métodos , Nanoestructuras/química , Polarimetría de Barrido por Laser/métodos , Resonancia por Plasmón de Superficie/métodos , Diseño de Equipo , Análisis de Elementos Finitos , Microscopía de Fuerza Atómica/métodos , Microscopía Fluorescente/métodos , Nanotecnología/métodos , Compuestos Orgánicos/química , Fotones , Polímeros/química , Propiedades de Superficie
17.
Nano Lett ; 10(11): 4571-7, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-20879722

RESUMEN

We demonstrate that a pair of electrical dipolar scatterers resonating at different frequencies, i.e., detuned electrical dipoles, can be advantageously employed for plasmonic sensing of the environment, both as an individual subwavelength-sized sensor and as a unit cell of a periodic array. It is shown that the usage of the ratio between the powers of light scattered into opposite directions (or into different diffraction orders), which peaks at the intermediate frequency, allows one to reach a sensitivity of ≈ 400 nm/RIU with record high levels of figure of merit exceeding 200. Qualitative considerations are supported with detailed simulations and proof-of-principle experiments using lithographically fabricated gold nanorods with resonances at 800 nm.


Asunto(s)
Oro/química , Modelos Químicos , Nanoestructuras/química , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Campos Electromagnéticos , Luz , Nanoestructuras/ultraestructura , Dispersión de Radiación
18.
Opt Express ; 16(6): 3924-30, 2008 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-18542489

RESUMEN

Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive index increases inside the array by a factor of approximately 1.08 (for the wavelength 800 nm) with respect to the SPP index at a flat surface. Observations of SPP focusing and deflection by circularly shaped areas as well as SPP waveguiding inside rectangular arrays are consistent with the SPP index increase deduced from the SPP refraction by triangular arrays. The SPP refractive index is found to decrease slightly for longer wavelengths within the wavelength range of 700-860 nm. Modeling based on the Green's tensor formalism is in a good agreement with the experimental results, opening the possibility to design nanoparticle arrays for specific applications requiring in-plane SPP manipulation.


Asunto(s)
Modelos Teóricos , Nanopartículas/química , Nanopartículas/ultraestructura , Nanotecnología/instrumentación , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Nanotecnología/métodos , Refractometría/métodos , Resonancia por Plasmón de Superficie/métodos
19.
Opt Express ; 15(11): 6576-82, 2007 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19546966

RESUMEN

We report on the focusing of surface plasmon polariton (SPP) beams with parabolic chains of gold nanoparticles fabricated on thin gold films. SPP focusing with different parabolic chains is investigated in the wavelength range of 700-860 nm, both experimentally and theoretically. Mapping of SPP fields is accomplished by making use of leakage radiation microscopy, demonstrating robust and efficient SPP focusing into submicron spots. Numerical simulations based on the Green's tensor formalism show very good agreement with the experimental results, suggesting the usage of elliptical corrections for parabolic structures to improve their focusing of slightly divergent SPP beams.

20.
Opt Express ; 15(23): 15234-41, 2007 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19550807

RESUMEN

Fractal shaped structures formed with a 100-nm-period square lattice of gold nanoparticles placed on a gold film are characterized by using far-field nonlinear scanning optical microscopy, in which two-photon photoluminescence (TPL) excited with a strongly focused laser beam (in the wavelength range of 730 - 790 nm) is detected. The TPL images recorded for all wavelengths exhibit diffraction-limited (~ 0.6 mum) bright spots corresponding to the field intensity enhancement of up to 150, whose positions are dictated by the incident light wavelength and polarization. We relate these field enhancements to the occurrence of constructive interference of surface plasmons (SPs), which are excited by the incident radiation (due to scattering by nanoparticles) and partially reflected by fractal shaped boundaries due to a difference in the SP effective index at a flat and periodically corrugated gold surface. The conjecture on SP index difference is verified with observations (using leakage radiation microscopy) of SP focusing by circular and waveguiding by rectangular areas filled with periodically arranged nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA