Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Biol ; 33(13): 2774-2783.e5, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37343558

RESUMEN

Cephalopods are remarkable among invertebrates for their cognitive abilities, adaptive camouflage, novel structures, and propensity for recoding proteins through RNA editing. Due to the lack of genetically tractable cephalopod models, however, the mechanisms underlying these innovations are poorly understood. Genome editing tools such as CRISPR-Cas9 allow targeted mutations in diverse species to better link genes and function. One emerging cephalopod model, Euprymna berryi, produces large numbers of embryos that can be easily cultured throughout their life cycle and has a sequenced genome. As proof of principle, we used CRISPR-Cas9 in E. berryi to target the gene for tryptophan 2,3 dioxygenase (TDO), an enzyme required for the formation of ommochromes, the pigments present in the eyes and chromatophores of cephalopods. CRISPR-Cas9 ribonucleoproteins targeting tdo were injected into early embryos and then cultured to adulthood. Unexpectedly, the injected specimens were pigmented, despite verification of indels at the targeted sites by sequencing in injected animals (G0s). A homozygote knockout line for TDO, bred through multiple generations, was also pigmented. Surprisingly, a gene encoding indoleamine 2,3, dioxygenase (IDO), an enzyme that catalyzes the same reaction as TDO in vertebrates, was also present in E. berryi. Double knockouts of both tdo and ido with CRISPR-Cas9 produced an albino phenotype. We demonstrate the utility of these albinos for in vivo imaging of Ca2+ signaling in the brain using two-photon microscopy. These data show the feasibility of making gene knockout cephalopod lines that can be used for live imaging of neural activity in these behaviorally sophisticated organisms.


Asunto(s)
Sistemas CRISPR-Cas , Decapodiformes , Animales , Decapodiformes/genética , Edición Génica/métodos , Técnicas de Inactivación de Genes , Genoma
2.
Cell Chem Biol ; 26(7): 926-935.e6, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31031140

RESUMEN

Disorders of bone healing and remodeling are indications with an unmet need for effective pharmacological modulators. We used a high-throughput screen to identify activators of the bone marker alkaline phosphatase (ALP), and discovered 6,8-dimethyl-3-(4-phenyl-1H-imidazol-5-yl)quinolin-2(1H)-one (DIPQUO). DIPQUO markedly promotes osteoblast differentiation, including expression of Runx2, Osterix, and Osteocalcin. Treatment of human mesenchymal stem cells with DIPQUO results in osteogenic differentiation including a significant increase in calcium matrix deposition. DIPQUO stimulates ossification of emerging vertebral primordia in developing zebrafish larvae, and increases caudal fin osteogenic differentiation during adult zebrafish fin regeneration. The stimulatory effect of DIPQUO on osteoblast differentiation and maturation was shown to be dependent on the p38 MAPK pathway. Inhibition of p38 MAPK signaling or specific knockdown of the p38-ß isoform attenuates DIPQUO induction of ALP, suggesting that DIPQUO mediates osteogenesis through activation of p38-ß, and is a promising lead candidate for development of bone therapeutics.


Asunto(s)
Diferenciación Celular/fisiología , Proteína Quinasa 11 Activada por Mitógenos/metabolismo , Osteoblastos/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Proteína Quinasa 11 Activada por Mitógenos/fisiología , Osteoblastos/fisiología , Osteogénesis , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Pez Cebra , Proteínas Quinasas p38 Activadas por Mitógenos
3.
Mol Biol Cell ; 27(8): 1220-34, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26912795

RESUMEN

Activation of the unfolded protein response (UPR) can be either adaptive or pathological. We term the pathological UPR that causes fatty liver disease a "stressed UPR." Here we investigate the mechanism of stressed UPR activation in zebrafish bearing a mutation in thetrappc11gene, which encodes a component of the transport protein particle (TRAPP) complex.trappc11mutants are characterized by secretory pathway defects, reflecting disruption of the TRAPP complex. In addition, we uncover a defect in protein glycosylation intrappc11mutants that is associated with reduced levels of lipid-linked oligosaccharides (LLOs) and compensatory up-regulation of genes in the terpenoid biosynthetic pathway that produces the LLO anchor dolichol. Treating wild-type larvae with terpenoid or LLO synthesis inhibitors phenocopies the stressed UPR seen intrappc11mutants and is synthetically lethal withtrappc11mutation. We propose that reduced LLO level causing hypoglycosylation is a mechanism of stressed UPR induction intrappc11mutants. Of importance, in human cells, depletion of TRAPPC11, but not other TRAPP components, causes protein hypoglycosylation, and lipid droplets accumulate in fibroblasts from patients with theTRAPPC11mutation. These data point to a previously unanticipated and conserved role for TRAPPC11 in LLO biosynthesis and protein glycosylation in addition to its established function in vesicle trafficking.


Asunto(s)
Oligosacáridos/metabolismo , Respuesta de Proteína Desplegada , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Atorvastatina/farmacología , Dolicoles/biosíntesis , Dolicoles/genética , Glicosilación , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Humanos , Larva/efectos de los fármacos , Larva/metabolismo , Lípidos/química , Hígado/metabolismo , Hígado/patología , Mutación , Oligosacáridos/química , Terpenos/metabolismo , Terpenos/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , Proteínas de Transporte Vesicular/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA