Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Microbiol ; 201(8): 1129-1140, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31168634

RESUMEN

Acinetobacter pittii strain ABC was isolated from oily sludge sediments and characterized with regard to utilization/degradation of hydrocarbons and competitive persistence in hydrocarbon-amended media. The isolate grew in both aliphatic- and aromatic hydrocarbon-amended Bushnell-Haas medium (BHM). When incubated in 1% (v/v) Assam crude oil-amended BHM for 5 and 10 days, this strain was able to degrade 88% and 99.8% of the n-hexane extractable crude oil components, respectively. The isolate showed appreciable emulsification index (E24 65.26 ± 1.2%), hydrophobicity (60.88 ± 3.5%) and produced lipopeptide biosurfactant (0.57 g L-1). The isolate was able to tolerate heavy metal salts at concentrations reported in crude oil-polluted sediments from Assam. A 16S rDNA DGGE-based screening showed the persistence of A. pittii strain ABC in hydrocarbon-amended microcosms co-inoculated with other hydrocarbonoclastic bacterial strains (Pseudomonas aeruginosa AKS1, Bacillus sp. AKS2, Arthrobacter sp. BC1, and Novosphingobium panipatense P5:ABC), each isolated from the same oily sludge sediment. These findings indicate A. pittii strain ABC as a potential agent for the bioremediation of crude oil-polluted environment.


Asunto(s)
Acinetobacter/metabolismo , Biodegradación Ambiental , Hidrocarburos/metabolismo , Contaminación por Petróleo/análisis , Petróleo/metabolismo , Acinetobacter/genética , Acinetobacter/aislamiento & purificación , ADN Ribosómico/genética , Interacciones Hidrofóbicas e Hidrofílicas , Aguas del Alcantarillado/microbiología
2.
Ecotoxicol Environ Saf ; 181: 274-283, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31201959

RESUMEN

Although UV-C radiation has been in use for killing unwanted cyanobacteria, experiments with lower doses of UV-C radiation instead showed induction of growth related parameters and enhanced biomass production in the cyanobacterium Nostoc muscorum Meg1. When the cyanobacterial cultures were exposed to UV-C radiation of varying doses (6, 12 and 18 mJ/cm2), concentrations of various photo-absorbing pigments, RuBisCO and D1 protein of PSII; activities of oxygen evolving complex, nitrogenase and glutamine synthetase were significantly increased upon 6 and 12 mJ/cm2 UV-C radiation exposures. Resulting higher photosynthetic performance was evident from the augmentation in carbohydrate content by ∼49% under single exposure to 6 mJ/cm2 UV-C by fifteenth day. The increased performances of both RuBisCO and D1 proteins were in part also due to induction at the genetic level as seen from the increase in their mRNA and protein levels under treatment. Similar increase was also observed in protein (16%) and in lipid contents (43%) that reflected an upsurge in the total biomass. Highest biomass (463 mg/L/d) was noted in culture exposed to 6 mJ/cm2 UV-C radiation, representing a ∼25% increase. Furthermore the possibility of this organism using part of the incident UV-C radiation as an additional source of energy was deduced from an experiment where the thylakoid membranes excited within UV (226-400 nm) range showed emission at longer wavelengths with an emission maximum at ∼640 nm. Thus this work provides evidence that lower UV-C doses can potentially augment cyanobacterial growth and use of unstandardized UV-C doses for restricting cyanobacterial growth may in fact produce contrary result.


Asunto(s)
Nostoc muscorum/efectos de la radiación , Rayos Ultravioleta , Glutamato-Amoníaco Ligasa/metabolismo , Nitrogenasa/metabolismo , Nostoc muscorum/enzimología , Nostoc muscorum/crecimiento & desarrollo , Nostoc muscorum/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
3.
Ecotoxicol Environ Saf ; 155: 171-179, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29555235

RESUMEN

With the intention of getting an insight into the differential effect of UV-C radiation on the N2-fixing heterocystous cyanobacterium Nostoc muscorum Meg1, various aspects of carbon and nitrogen metabolism was evaluated in the organism. Exposure to different doses of UV-C (6, 12, 18 and 24 mJ/cm2) showed that among various photo-absorbing pigments, phycobiliproteins were most sensitive. Oxygen evolving complex (OEC) activity measured as net oxygen evolution rate decreased by 63% upon 24 mJ/cm2 exposure. Western blot analysis established that D1 protein of PSII was highly sensitive and its levels decreased even at a radiation dose as low as 6 mJ/cm2. In contrast, levels of the Calvin cycle enzyme RuBisCO was increased at 6 and 12 mJ/cm2 doses but the level decreased drastically (84%) at higher dose (24 mJ/cm2). The nitrogenase enzyme activity decreased at all doses but the ammonia assimilating enzyme glutamine synthetase (GS) activity recorded increase at the lower doses. The reactive oxygen species (ROS) and lipid peroxidation increased upon UV-C exposure. Transmission electron microscopic observation revealed damage to ultrastructure especially the thylakoid membrane organization, aggregation of dissolving phycobilisomes and loss of caboxysomes. Interestingly, sub-lethal radiation (6 and 12 mJ/cm2) dose exposures increased the growth rate in the organism when growth was measured over a period of 11 days after radiation exposure.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Nostoc muscorum/efectos de la radiación , Rayos Ultravioleta , Glutamato-Amoníaco Ligasa/metabolismo , Peroxidación de Lípido/efectos de la radiación , Microscopía Electrónica de Transmisión , Nitrogenasa/metabolismo , Nostoc muscorum/crecimiento & desarrollo , Nostoc muscorum/metabolismo , Nostoc muscorum/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
4.
Curr Microbiol ; 56(5): 436-41, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18266032

RESUMEN

We present evidence, for the first time, of the occurrence of a transport system common for amino acid methionine, and methionine/glutamate analogues L-methionine-DL-sulfoximine (MSX) and phosphinothricin (PPT) in cyanobacterium Nostoc muscorum. Methionine, which is toxic to cyanobacterium, enhanced its nitrogenase activity at lower concentrations. The cyanobacterium showed a biphasic pattern of methionine uptake activity that was competitively inhibited by the amino acids alanine, isoleucine, leucine, phenylalanine, proline, valine, glutamine, and asparagine. The methionine/glutamate analogue-resistant N. muscorum strains (MSX-R and PPT-R strains) also showed methionine-resistant phenotype accompanied by a drastic decrease in 35S methionine uptake activity. Treatment of protein extracts from these mutant strains with MSX and PPT reduced biosynthetic glutamine synthetase (GS) activity only in vitro and not in vivo. This finding implicated that MSX- and PPT-R phenotypes may have arisen due to a defect in their MSX and PPT transport activity. The simultaneous decrease in methionine uptake activity and in vitro sensitivity toward MSX and PPT of GS protein in MSX- and PPT-R strains indicated that methionine, MSX, and PPT have a common transport system that is shared by other amino acids as well in N. muscorum. Such information can become useful for isolation of methionine-producing cyanobacterial strains.


Asunto(s)
Aminobutiratos/metabolismo , Metionina Sulfoximina/metabolismo , Metionina/metabolismo , Nostoc muscorum/metabolismo , Transporte Biológico Activo/fisiología , Glutamato-Amoníaco Ligasa/metabolismo , Metionina/análogos & derivados , Nostoc muscorum/enzimología
5.
Indian J Microbiol ; 47(4): 345-52, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23100688

RESUMEN

A Mastigocladus species was isolated from the hot spring of Jakrem (Meghalaya) India. Uptake and utilization of nitrate, nitrite, ammonium and amino acids (glutamine, asparagine, arginine, alanine) were studied in this cyanobacterium grown at different temperatures (25°C, 45°C). There was 2-3 fold increase in the heterocyst formation and nitrogenase activity in N-free medium at higher temperature (45°C). Growth and uptake and assimilation of various nitrogen sources were also 2-3 fold higher at 45°C indicating that it is a thermophile. The extent of induction and repression of nitrate uptake by NO(3) (-) and NH(4) (+), respectively, differed from that of nitrite. It appeared that Mastigocladus had two independent nitrate/nitrite transport systems. Nitrate reductase and nitrite reductase activitiy was not NO(3) (-)-inducible and ammonium or amino acids caused only partial repression. Presence of various amino acids in the media partially repressed glutamine synthetase activity. Ammonium (methylammonium) and amino acid uptake showed a biphasic pattern, was energy-dependent and the induction of uptake required de novo protein synthesis. Ammonium transport was substrate (NH(4) (+))-repressible, while the amino acid uptake was substrate inducible. When grown at 25°C, the cyanobacterium formed maximum akinetes that remained viable upto 5 years under dry conditions.

6.
Curr Microbiol ; 45(2): 99-104, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12070686

RESUMEN

Nostoc ANTH is a filamentous, heterocystous cyanobacterium capable of N(2)-fixation in the absence of combined nitrogen. A chlorate-resistant mutant (Clo- R) of Nostoc ANTH was isolated that differentiates heterocysts and fixes N(2) in the presence of nitrate, but not in the presence of nitrite or ammonium. The mutant lacks nitrate uptake and thereby also lacks induction of nitrate reductase activity by nitrate. However, this mutant is able to transport and assimilate nitrite, indicating that there is a transport system for nitrite that is distinct from that for the nitrate. The lack of inhibitory effect of nitrate on N(2)-fixation was owing to lack of nitrate uptake and not to lack of enzymes for its assimilation (nitrate reductase and glutamine synthetase) or the lack of an ammonium transport system for retention of ammonia. The mutant has potential for use as a biofertilizer supplementing chemical nitrate fertilizer in rice fields, without N(2)-fixation being adversely affected.


Asunto(s)
Cloratos/farmacología , Cianobacterias/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Fijación del Nitrógeno/fisiología , Transporte Biológico , Cianobacterias/efectos de los fármacos , Cianobacterias/enzimología , Farmacorresistencia Bacteriana/fisiología , Fertilizantes , Mutación , Nitrato Reductasas/metabolismo , Nitrito Reductasas/metabolismo
7.
Indian J Biochem Biophys ; 39(3): 163-9, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22905386

RESUMEN

Amino acid uptake and utilization of various nitrogen sources (amino acids, nitrite, nitrate and ammonia) were studied in Nostoc ANTH and i ts mu tant (Het(-)Nif(-)) isolate defective in heterocyst formation and N2-fixation. Both parent and its mutant grew at the expense of glutamine, asparagine and arginine as a source of fixed-nitrogen. Growth was better in glutamine-and asparagine-media as compared to that in arginine media. Glutamine and asparagine repressed heterocyst formation, N2-fixation and nitrate reduction in Nostoc ANTH, but arginine did so only partially. The poor growth in arginine-medium was not due to poor uptake rates, since the uptake rates were not significantly different from those for glutamine or asparagine. The glutamine synthetase activity remained unaffected during cultivation in media containing any one of the three amino acids tested. The uptake of amino acids was substrate-inducible, energy-dependent and required de novo protein synthesis. Nitrate and ammonium repressed ammonium uptake, but did not repress uptake of amino acids. In N2-medium (BG-11(0)), the uptake of ammonium and amino acids in the mutant was significantly higher than its parent strain. This was apparently due to nitrogen limitation since the mutant was unable to fix N2 and the growth medium lacked combined-N.


Asunto(s)
Aminoácidos/química , Anthocerotophyta/metabolismo , Cianobacterias/metabolismo , Nitrógeno/química , Arginina/química , Asparagina/química , Medios de Cultivo/química , Regulación Bacteriana de la Expresión Génica , Glutamato-Amoníaco Ligasa/química , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/química , Compuestos Inorgánicos , Mutación , Nitrato-Reductasa/metabolismo , Fijación del Nitrógeno , Nitrogenasa/química , Compuestos de Amonio Cuaternario/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA