Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8013): 869-877, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693267

RESUMEN

Airway hillocks are stratified epithelial structures of unknown function1. Hillocks persist for months and have a unique population of basal stem cells that express genes associated with barrier function and cell adhesion. Hillock basal stem cells continually replenish overlying squamous barrier cells. They exhibit dramatically higher turnover than the abundant, largely quiescent classic pseudostratified airway epithelium. Hillocks resist a remarkably broad spectrum of injuries, including toxins, infection, acid and physical injury because hillock squamous cells shield underlying hillock basal stem cells from injury. Hillock basal stem cells are capable of massive clonal expansion that is sufficient to resurface denuded airway, and eventually regenerate normal airway epithelium with each of its six component cell types. Hillock basal stem cells preferentially stratify and keratinize in the setting of retinoic acid signalling inhibition, a known cause of squamous metaplasia2,3. Here we show that mouse hillock expansion is the cause of vitamin A deficiency-induced squamous metaplasia. Finally, we identify human hillocks whose basal stem cells generate functional squamous barrier structures in culture. The existence of hillocks reframes our understanding of airway epithelial regeneration. Furthermore, we show that hillocks are one origin of 'squamous metaplasia', which is long thought to be a precursor of lung cancer.


Asunto(s)
Plasticidad de la Célula , Células Epiteliales , Regeneración , Mucosa Respiratoria , Células Madre , Animales , Femenino , Humanos , Masculino , Ratones , Células Epiteliales/citología , Células Epiteliales/patología , Metaplasia/etiología , Metaplasia/patología , Mucosa Respiratoria/citología , Mucosa Respiratoria/lesiones , Mucosa Respiratoria/patología , Células Madre/citología , Tretinoina/metabolismo , Tretinoina/farmacología , Vitamina A/metabolismo , Vitamina A/farmacología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/patología , Ratones Endogámicos C57BL
2.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38076853

RESUMEN

The human airway contains specialized rare epithelial cells whose roles in respiratory disease are not well understood. Ionocytes express the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), while chemosensory tuft cells express asthma-associated alarmins. However, surprisingly, exceedingly few mature tuft cells have been identified in human lung cell atlases despite the ready identification of rare ionocytes and neuroendocrine cells. To identify human rare cell progenitors and define their lineage relationship to mature tuft cells, we generated a deep lung cell atlas containing 311,748 single cell RNA-Seq (scRNA-seq) profiles from discrete anatomic sites along the large and small airways and lung lobes of explanted donor lungs that could not be used for organ transplantation. Of 154,222 airway epithelial cells, we identified 687 ionocytes (0.45%) that are present in similar proportions in both large and small airways, suggesting that they may contribute to both large and small airways pathologies in CF. In stark contrast, we recovered only 3 mature tuft cells (0.002%). Instead, we identified rare bipotent progenitor cells that can give rise to both ionocytes and tuft cells, which we termed tuft-ionocyte progenitor cells (TIP cells). Remarkably, the cycling fraction of these TIP cells was comparable to that of basal stem cells. We used scRNA-seq and scATAC-seq to predict transcription factors that mark this novel rare cell progenitor population and define intermediate states during TIP cell lineage transitions en route to the differentiation of mature ionocytes and tuft cells. The default lineage of TIP cell descendants is skewed towards ionocytes, explaining the paucity of mature tuft cells in the human airway. However, Type 2 and Type 17 cytokines, associated with asthma and CF, diverted the lineage of TIP cell descendants in vitro , resulting in the differentiation of mature tuft cells at the expense of ionocytes. Consistent with this model of mature tuft cell differentiation, we identify mature tuft cells in a patient who died from an asthma flare. Overall, our findings suggest that the immune signaling pathways active in asthma and CF may skew the composition of disease-relevant rare cells and illustrate how deep atlases are required for identifying physiologically-relevant scarce cell populations.

4.
bioRxiv ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37609222

RESUMEN

The airway epithelium is frequently exposed to pathogens and allergens, but the cells that are responsible for sampling these inhaled environmental agents have not been fully defined. Thus, there is a critical void in our understanding of how luminal antigens are delivered to the immune cells that drive the appropriate immune defenses against environmental assaults. In this study, we report the first single cell transcriptomes of airway Microfold (M) cells, whose gut counterparts have long been known for their antigen sampling abilities. Given their very recent discovery in the lower respiratory airways, the mechanisms governing the differentiation and functions of airway M cells are largely unknown. Here, we shed light on the pathways of airway M cell differentiation, establish their lineage, and identify a functional M cell-specific endocytic receptor, the complement receptor 2 (CR2). Lastly, we demonstrate that airway M cells can endocytose Aspergillus fumigatus conidia in a CR2-dependent manner. Collectively, this work lays a foundation for deepening our understanding of lung mucosal immunology and the mechanisms that drive lung immunity and tolerance.

6.
bioRxiv ; 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37034634

RESUMEN

Respiratory infections caused by the human fungal pathogens, Aspergillus fumigatus and Cryptococcus neoformans, are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction of neutrophils to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, has far-reaching effects, dampening airway epithelial chemokine production in response to fungi, bacteria, and exogenous cytokines. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.

7.
Elife ; 122023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36994985

RESUMEN

The specific functional properties of a tissue are distributed amongst its component cell types. The various cells act coherently, as an ensemble, in order to execute a physiologic response. Modern approaches for identifying and dissecting novel physiologic mechanisms would benefit from an ability to identify specific cell types in live tissues that could then be imaged in real time. Current techniques require the use of fluorescent genetic reporters that are not only cumbersome, but which only allow the study of three or four cell types at a time. We report a non-invasive imaging modality that capitalizes on the endogenous autofluorescence signatures of the metabolic cofactors NAD(P)H and FAD. By marrying morphological characteristics with autofluorescence signatures, all seven of the airway epithelial cell types can be distinguished simultaneously in mouse tracheal explants in real time. Furthermore, we find that this methodology for direct cell type-specific identification avoids pitfalls associated with the use of ostensibly cell type-specific markers that are, in fact, altered by clinically relevant physiologic stimuli. Finally, we utilize this methodology to interrogate real-time physiology and identify dynamic secretory cell associated antigen passages (SAPs) that form in response to cholinergic stimulus. The identical process has been well documented in the intestine where the dynamic formation of SAPs and goblet cell associated antigen passages (GAPs) enable luminal antigen sampling. Airway secretory cells with SAPs are frequently juxtaposed to antigen presenting cells, suggesting that airway SAPs, like their intestinal counterparts, not only sample antigen but convey their cargo for immune cell processing.


Imaging several cell types, at the same time, within a living tissue is no small endeavor. To do so, scientists usually have to perform genetic manipulations that make certain proteins in each cell type fluorescent and therefore easy to track. However, these approaches are cumbersome, limited, and often not applicable to intact human tissues. A possible alternative would be to make use of autofluorescence ­ the fact that certain molecules in living cells naturally fluoresce when exposed to a particular wavelength of light. For example, this is the case for NAD(P)H and FAD, two small molecules necessary for life's biochemical processes, and whose intracellular levels and locations vary depending on cell type. In response, Shah, Hou et al. developed a new imaging technique that takes advantage of the unique autofluorescence signatures of NAD(P)H and FAD to distinguish between the seven different types of cells that line the surface of the airways of mice. Using their autofluorescence approach, Shah, Hou et al. were also able to discover a new role for secretory cells, which normally produce fluids, mucus and various proteins necessary for the lungs to work properly. The imaging experiments show that these cells could also sample material from the surface of the airway in a manner similar to how cells in the intestine take up material from the gut and pass their cargo to immune cells that mediate infection control or tolerance. Further studies should uncover more details about this new function of secretory lung cells. Other exciting discoveries may also emerge from researchers adopting the method developed by Shah, Hou et al. to examine a range of organs (both healthy and diseased), and attempting to apply it to human tissues.


Asunto(s)
Antígenos , Células Caliciformes , Ratones , Animales , Células Presentadoras de Antígenos , Fagocitosis , Imagen Óptica
8.
Mol Cell Biol ; 42(10): e0017122, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36154662

RESUMEN

Cellular senescence is a stable form of cell cycle arrest associated with proinflammatory responses. Senescent cells can be cleared by the immune system as a part of normal tissue homeostasis. However, senescent cells can also accumulate in aged and diseased tissues, contributing to inflammation and disease progression. The mechanisms mediating the impaired immune-mediated clearance of senescent cells are poorly understood. Here, we report that senescent cells upregulate the immune checkpoint molecule PD-L1, the ligand for PD-1 on immune cells, which drives immune cell inactivation. The induction of PD-L1 in senescence is dependent on the proinflammatory program. Furthermore, the secreted factors released by senescent cells are sufficient to upregulate PD-L1 in nonsenescent control cells, mediated by the JAK-STAT pathway. In addition, we show that prolongevity intervention rapamycin downregulates PD-L1 in senescent cells. Last, we found that PD-L1 is upregulated in several tissues in naturally aged mice and in the lungs of idiopathic pulmonary fibrosis patients. Together, our results report that senescence and aging are associated with upregulation of a major immune checkpoint molecule, PD-L1. Targeting PD-L1 may offer new therapeutic opportunities in treating senescence and age-associated diseases.


Asunto(s)
Antígeno B7-H1 , Quinasas Janus , Ratones , Animales , Regulación hacia Arriba , Quinasas Janus/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Punto de Control Inmunitario , Ligandos , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Envejecimiento/metabolismo , Sirolimus
9.
Annu Rev Pathol ; 17: 23-46, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34437820

RESUMEN

Cystic fibrosis (CF) is caused by defects in an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Recently, a new airway epithelial cell type has been discovered and dubbed the pulmonary ionocyte. Unexpectedly, these ionocytes express higher levels of CFTR than any other airway epithelial cell type. However, ionocytes are not the sole CFTR-expressing airway epithelial cells, and CF-associated disease genes are in fact expressed in multiple airway epithelial cell types. The experimental depletion of ionocytes perturbs epithelial physiology in the mouse trachea, but the role of these rare cells in the pathogenesis of human CF remains mysterious. Ionocytes have been described in diverse tissues(kidney and inner ear) and species (frog and fish). We draw on these prior studies to suggest potential roles of airway ionocytes in health and disease. A complete understanding of ionocytes in the mammalian airway will ultimately depend on cell type-specific genetic manipulation.


Asunto(s)
Fibrosis Quística , Animales , Fibrosis Quística/genética , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Epitelio/metabolismo , Epitelio/patología , Humanos , Ratones
10.
J Fungi (Basel) ; 9(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36675861

RESUMEN

The lung epithelial lining serves as the primary barrier to inhaled environmental toxins, allergens, and invading pathogens. Pulmonary fungal infections are devastating and carry high mortality rates, particularly in those with compromised immune systems. While opportunistic fungi infect primarily immunocompromised individuals, endemic fungi cause disease in immune competent and compromised individuals. Unfortunately, in the case of inhaled fungal pathogens, the airway epithelial host response is vastly understudied. Furthering our lack of understanding, very few studies utilize primary human models displaying pseudostratified layers of various epithelial cell types at air-liquid interface. In this review, we focus on the diversity of the human airway epithelium and discuss the advantages and disadvantages of oncological cell lines, immortalized epithelial cells, and primary epithelial cell models. Additionally, the responses by human respiratory epithelial cells to invading fungal pathogens will be explored. Future investigations leveraging current human in vitro model systems will enable identification of the critical pathways that will inform the development of novel vaccines and therapeutics for pulmonary fungal infections.

11.
Cell Rep ; 35(3): 109011, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33882306

RESUMEN

Pulmonary neuroendocrine cells (PNECs) have crucial roles in airway physiology and immunity by producing bioactive amines and neuropeptides (NPs). A variety of human diseases exhibit PNEC hyperplasia. Given accumulated evidence that PNECs represent a heterogenous population of cells, we investigate how PNECs differ, whether the heterogeneity is similarly present in mouse and human cells, and whether specific disease involves discrete PNECs. Herein, we identify three distinct types of PNECs in human and mouse airways based on single and double positivity for TUBB3 and the established NP markers. We show that the three PNEC types exhibit significant differences in NP expression, homeostatic turnover, and response to injury and disease. We provide evidence that these differences parallel their distinct cell of origin from basal stem cells (BSCs) or other airway epithelial progenitors.


Asunto(s)
Linaje de la Célula/genética , Células Epiteliales/patología , Células Neuroendocrinas/patología , Células Madre/patología , Tubulina (Proteína)/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Células Epiteliales/clasificación , Células Epiteliales/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patología , Lactante , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Pulmón , Masculino , Ratones , Ratones Transgénicos , Células Neuroendocrinas/clasificación , Células Neuroendocrinas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Transducción de Señal , Células Madre/clasificación , Células Madre/metabolismo , Muerte Súbita del Lactante/genética , Muerte Súbita del Lactante/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
12.
Science ; 371(6524): 52-57, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33384370

RESUMEN

Neuroendocrine (NE) cells are epithelial cells that possess many of the characteristics of neurons, including the presence of secretory vesicles and the ability to sense environmental stimuli. The normal physiologic functions of solitary airway NE cells remain a mystery. We show that mouse and human airway basal stem cells sense hypoxia. Hypoxia triggers the direct differentiation of these stem cells into solitary NE cells. Ablation of these solitary NE cells during hypoxia results in increased epithelial injury, whereas the administration of the NE cell peptide CGRP rescues this excess damage. Thus, we identify stem cells that directly sense hypoxia and respond by differentiating into solitary NE cells that secrete a protective peptide that mitigates hypoxic injury.


Asunto(s)
Diferenciación Celular , Hipoxia/patología , Células Neuroendocrinas/fisiología , Oxígeno/fisiología , Células Madre/fisiología , Tráquea/citología , Anaerobiosis , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Proteína Similar al Receptor de Calcitonina/metabolismo , Recuento de Células , Eliminación de Gen , Humanos , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Mutantes , Células Neuroendocrinas/citología , Prolil Hidroxilasas/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Transactivadores/genética
13.
Oral Oncol ; 111: 104930, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32745900

RESUMEN

Mutations in histone modifying enzymes and histone variants were identified in multiple cancers in The Cancer Genome Atlas (TCGA) studies. However, very little progress and understanding has been made in identifying the contribution of epigenetic factors in head and neck squamous cell carcinoma (HNSCC). Here, we report the identification of RUVBL1 (TIP49a), a component of the TIP60 histone modifying complex as being amplified and overexpressed in HNSCC. RUVBL1 plays a key role in incorporating histone variant H2AZ in chromatin thereby regulating transcription of key genes involved in differentiation, cancer cell proliferation and invasion. H2AZ is also overexpressed in HNSCC tumors thereby regulating RUVBL1/H2AZ dependent transcriptional programs. Patient data analysis of multiple cohorts including TCGA and single cell HNSCC data indicated RUVBL1 overexpression as a poor prognostic marker and predicts poor survival. In vitro experiments indicate a pro-proliferative role for RUVBL1/H2AZ in HNSCC cells. RUVBL1 inversely correlates with differentiation program and positively correlates with oncogenic programs, making it a key contributor to tumorigenesis and a vulnerable therapeutic target in HNSCC patients.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas Portadoras/genética , Diferenciación Celular/genética , Proliferación Celular/genética , ADN Helicasas/genética , Neoplasias de Cabeza y Cuello/genética , Histonas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , ADN Helicasas/metabolismo , Bases de Datos Genéticas , Epigénesis Genética , Amplificación de Genes , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/patología , Histonas/metabolismo , Humanos , Invasividad Neoplásica/genética , Pronóstico , ARN Mensajero/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Transcripción Genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-32122885

RESUMEN

Advances in single-cell RNA-seq (scRNA-seq) and computational analysis have enabled the systematic interrogation of the cellular composition of tissues. Combined with tools from developmental biology, cell biology, and genetics, these approaches are revealing fundamental aspects of tissue geometry and physiology, including the distribution, origins, and inferred functions of specialized cell types, and the dynamics of cellular turnover and differentiation. By comparing different tissues, such studies can delineate shared and specialized features of cell types and their lineage. Here, we compare two developmentally related murine epithelia, the airway and the small intestinal epithelia, which are both derived from the embryonic endodermal gut tube. We examine how airway and intestine generate and functionalize common archetypal cell types to fulfill similar shared physiologic functionalities. We point to cases in which similar cell types are repurposed to accommodate each tissue's unique physiologic role, and highlight tissue-specific cells whose specializations contribute to the distinct functional roles of each organ. We discuss how archetypal and unique cell types are incorporated within a cellular lineage, and how the regulation of the proportions of these cell types enables tissue-level organization to meet functional demands and maintain homeostasis.


Asunto(s)
Diferenciación Celular/fisiología , Células Enteroendocrinas/fisiología , Mucosa Intestinal/citología , Células Neuroendocrinas/fisiología , Mucosa Respiratoria/citología , Animales , Mucosa Intestinal/crecimiento & desarrollo , Ratones , Mucosa Respiratoria/crecimiento & desarrollo
15.
Am J Respir Cell Mol Biol ; 61(1): 31-41, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30995076

RESUMEN

Lung disease accounts for every sixth death globally. Profiling the molecular state of all lung cell types in health and disease is currently revolutionizing the identification of disease mechanisms and will aid the design of novel diagnostic and personalized therapeutic regimens. Recent progress in high-throughput techniques for single-cell genomic and transcriptomic analyses has opened up new possibilities to study individual cells within a tissue, classify these into cell types, and characterize variations in their molecular profiles as a function of genetics, environment, cell-cell interactions, developmental processes, aging, or disease. Integration of these cell state definitions with spatial information allows the in-depth molecular description of cellular neighborhoods and tissue microenvironments, including the tissue resident structural and immune cells, the tissue matrix, and the microbiome. The Human Cell Atlas consortium aims to characterize all cells in the healthy human body and has prioritized lung tissue as one of the flagship projects. Here, we present the rationale, the approach, and the expected impact of a Human Lung Cell Atlas.


Asunto(s)
Enfermedades Pulmonares/patología , Pulmón/patología , Humanos , Pulmón/metabolismo , Transcriptoma/genética
16.
Nature ; 560(7718): 319-324, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069044

RESUMEN

The airways of the lung are the primary sites of disease in asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells based on their location; a distinct cell type in high turnover squamous epithelial structures that we term 'hillocks'; and disease-relevant subsets of tuft and goblet cells. We developed 'pulse-seq', combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that are characteristic of cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Células Epiteliales/metabolismo , Animales , Asma/genética , Células Epiteliales/citología , Femenino , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Caliciformes/citología , Células Caliciformes/metabolismo , Humanos , Pulmón/citología , Masculino , Ratones , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Tráquea/citología
17.
Am J Respir Cell Mol Biol ; 59(6): 684-694, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29958012

RESUMEN

The airway epithelial cell (AEC) response to allergens helps initiate and propagate allergic inflammation in asthma. CARMA3 is a scaffold protein that mediates G protein-coupled receptor-induced NF-κB activation in airway epithelium. In this study, we demonstrate that mice with CARMA3-deficient AECs have reduced airway inflammation, as well as reduced type 2 cytokine levels in response to Alternaria alternata. These mice also have reduced production of IL-33 and IL-25, and reduced numbers of innate lymphoid cells in the lung. We also show that CARMA3-deficient human AECs have decreased production of proasthmatic mediators in response to A. alternata. Finally, we show that CARMA3 interacts with inositol 1,4,5-trisphosphate receptors in AECs, and that inhibition of CARMA3 signaling reduces A. alternata-induced intracellular calcium release. In conclusion, we show that CARMA3 signaling in AECs helps mediate A. alternata-induced allergic airway inflammation, and that CARMA3 is an important signaling molecule for type 2 immune responses in the lung.


Asunto(s)
Alérgenos/inmunología , Alternaria/fisiología , Alternariosis/inmunología , Asma/inmunología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Neumonía/inmunología , Alérgenos/metabolismo , Alternariosis/metabolismo , Alternariosis/microbiología , Animales , Asma/metabolismo , Asma/microbiología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Ratones , Neumonía/metabolismo , Neumonía/microbiología
18.
Cell Stem Cell ; 23(3): 329-341, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29910150

RESUMEN

In injured tissues, regeneration is often associated with cell fate plasticity, in that cells deviate from their normal lineage paths. It is becoming increasingly clear that this plasticity often creates alternative strategies to restore damaged or lost cells. Alternatively, cell fate plasticity is also part and parcel of pathologic tissue transformations that accompany disease. In this Perspective, we summarize a few illustrative examples of physiologic and aberrant cellular plasticity. Then, we speculate on how one could enhance endogenous plasticity to promote regeneration and reverse pathologic plasticity, perhaps inspiring interest in a new class of therapies targeting cell fate modulation.


Asunto(s)
Plasticidad de la Célula/efectos de los fármacos , Medicina Regenerativa/métodos , Animales , Humanos
19.
J Infect Dis ; 218(suppl_1): S44-S48, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29878132

RESUMEN

Residency training is a profound experience that greatly influences the career trajectory of every trainee. Currently, residency programs focus heavily (or almost exclusively) on the acquisition of medical knowledge and fail to foster intellectual curiosity and introduce residents to careers in investigation. We share 3 programs embedded in residency training where this focus is shifted with an emphasis on prompting intellectual curiosity and exciting residents about careers in investigation to revitalize the physician-scientist workforce.


Asunto(s)
Internado y Residencia , Médicos , Investigadores , Selección de Profesión , Fuerza Laboral en Salud , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA