Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Prog ; 36(6): e3037, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32533601

RESUMEN

Lipids, proteins, and carbohydrates are the major constituents found in microalga cells, in varying proportions, and these biomolecules find applications in different industries. During microalga cultivation, to efficiently manipulate, control, and optimize the productivity of a specific compound for a specific application, real-time monitoring of these three cell components is essential. In this study, a method using measurement of electrical capacitance was developed to simultaneously determine the lipid, protein, and carbohydrate content of microalga cells without the requirement for any pre-processing steps. The marine microalga Nannochloropsis oculata was cultivated under nitrogen starvation conditions to induce lipid accumulation over a period of 22 days. The correlation between the electrical capacitance of the microalga culture and the intracellular biomolecule content (determined by standard techniques) was investigated, enabling subsequent deduction of microalga intracellular content from electrical capacitance of the culture. The accuracy and precision of the technique were proven by validating an independent sample. The main advantage of the proposed technique is its capability of quantifying microalga composition within a few minutes, significantly faster than currently available conventional techniques.


Asunto(s)
Carbohidratos/aislamiento & purificación , Lípidos/aislamiento & purificación , Microalgas/química , Proteínas/aislamiento & purificación , Carbohidratos/química , Espectroscopía Dieléctrica , Lípidos/química , Proteínas/química
2.
Heliyon ; 6(1): e03102, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31909269

RESUMEN

Available methods for detecting blood in the urine (hematuria) can be problematic since results can be influenced by many factors in patients and in the lab settings, resulting in false positive or false negative results. This necessitates the development of new, accurate and easy-access methods that save time and effort. This study demonstrates a label-free and accurate method for detecting the presence of red and white blood cells (RBCs and WBCs) in urine by measuring the changes in the dielectric properties of urine upon increasing concentrations of both cell types. The current method could detect changes in the electrical properties of fresh urine over a short time interval, making this method suitable for detecting changes that cannot be recognized by conventional methods. Correcting for these changes enabled the detection of a minimum cell concentration of 102 RBCs per ml which is not possible by conventional methods used in the labs except for the semi-quantitative method that can detect 50 RBCs per ml, but it is a lengthy and involved procedure, not suitable for high volume labs. This ability to detect very small amount of both types of cells makes the proposed technique an attractive tool for detecting hematuria, the presence of which is indicative of problems in the excretory system.

3.
Int J Nanomedicine ; 13: 2997-3010, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872292

RESUMEN

BACKGROUND: Activated carbon (AC) is a common adsorbent that is used in both artificial and bioartificial liver devices. METHODS: Three natural materials - date pits of Phoenix dactylifera (fruit), Simmondsia chinensis (jojoba) seeds, and Scenedesmus spp. (microalgae) - were used in the present investigation as precursors for the synthesis of AC using physical activation. The chemical structures and morphology of AC were analyzed. Then, AC's bilirubin adsorption capacity and its cytotoxicity on normal liver (THLE2) and liver cancer (HepG2) cells were characterized. RESULTS: Compared with the other raw materials examined, date-pit AC was highly selective and showed the most effective capacity of bilirubin adsorption, as judged by isotherm-modeling analysis. MTT in vitro analysis indicated that date-pit AC had the least effect on the viability of both THLE2 and HepG2 cells compared to jojoba seeds and microalgae. All three biomaterials under investigation were used, along with collagen and Matrigel, to grow cells in 3D culture. Fluorescent microscopy confirmed date-pit AC as the best to preserve liver cell integrity. CONCLUSION: The findings of this study introduce date-pit-based AC as a novel alternative biomaterial for the removal of protein-bound toxins in bioartificial liver devices.


Asunto(s)
Bilirrubina/farmacocinética , Carbón Orgánico/química , Magnoliopsida/química , Phoeniceae/química , Scenedesmus/química , Adsorción , Albúminas/química , Bilirrubina/química , Bilirrubina/toxicidad , Línea Celular , Células Hep G2 , Humanos , Inactivación Metabólica , Hígado/citología , Hígado Artificial , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA