RESUMEN
The global population is growing rapidly, and with it, the demand for food. In the coming decades, more and more people will be living in urban areas, where land for traditional agriculture is scarce. Urban agriculture can help to meet this growing demand for food in a sustainable way. Urban agriculture is the practice of growing food in urban areas. It can be done on rooftops, balconies, vacant lots, and even in alleyways. Urban agriculture can produce a variety of crops, including fruits, vegetables, and herbs. It can also help to improve air quality, reduce stormwater runoff, and create jobs. Biotechnology can be used to improve the efficiency and sustainability of urban agriculture. Biotechnological tools can be used to develop crops that are resistant to pests and diseases, that are more tolerant of drought and heat, and that have higher yields. Biotechnology can also be used to improve the nutritional value of crops. This review article discusses the need for and importance of urban agriculture, biotechnology, and genome editing in meeting the growing demand for food in urban areas. It also discusses the potential of biotechnology to improve the sustainability of urban agriculture.
Asunto(s)
Biotecnología , Verduras , Humanos , Productos Agrícolas/genética , Valor Nutritivo , AgriculturaRESUMEN
Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter the deleterious effects of genomic instability, organisms have evolved general and specific DNA damage repair (DDR) pathways that act either independently or mutually to repair the DNA damage. The mechanisms by which various DNA repair pathways are activated have been fairly investigated in model organisms including bacteria, fungi, and mammals; however, very little is known regarding how plants sense and repair DNA damage. Plants being sessile are innately exposed to a wide range of DNA-damaging agents both from biotic and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their harmful effects, plants also harbor highly conserved DDR pathways that share several components with the DDR machinery of other organisms. Maintenance of genomic integrity is key for plant survival due to lack of reserve germline as the derivation of the new plant occurs from the meristem. Untowardly, the accumulation of mutations in the meristem will result in a wide range of genetic abnormalities in new plants affecting plant growth development and crop yield. In this review, we will discuss various DNA repair pathways in plants and describe how the deficiency of each repair pathway affects plant growth and development.
RESUMEN
Salt stress limits plant growth and productivity by severely impacting the fundamental physiological processes. Silicon (Si) supplementation is considered one of the promising methods to improve plant resilience under salt stress. Here, the role of Si in modulating physiological and biochemical processes that get adversely affected by high salinity, is discussed. Although numerous reports show the beneficial effects of Si under stress, the precise molecular mechanism underlying this is not well understood. Questions like whether all plants are equally benefitted with Si supplementation despite having varying Si uptake capability and salinity tolerance are still elusive. This review illustrates the Si uptake and accumulation mechanism to understand the direct or indirect participation of Si in different physiological processes. Evaluation of plant responses at transcriptomics and proteomics levels are promising in understanding the role of Si. Integration of physiological understanding with omics scale information highlighted Si supplementation affecting the phytohormonal and antioxidant responses under salinity as a key factor defining improved resilience. Similarly, the crosstalk of Si with lignin and phenolic content under salt stress also seems to be an important phenomenon helping plants to reduce the stress. The present review also addressed various crucial mechanisms by which Si application alleviates salt stress, such as a decrease in oxidative damage, decreased lipid peroxidation, improved photosynthetic ability, and ion homeostasis. Besides, the application and challenges of using Si-nanoparticles have also been addressed. Comprehensive information and discussion provided here will be helpful to better understand the role of Si under salt stress.
Asunto(s)
Estrés Salino , Silicio , Antioxidantes , Salinidad , Tolerancia a la Sal , Silicio/farmacologíaRESUMEN
Tonoplast intrinsic proteins (TIPs), belonging to the aquaporin family, are transmembrane channels located mostly at the tonoplast of plant cells. The TIPs are known to transport water and many other small solutes such as ammonia, urea, hydrogen peroxide, and glycerol. In the present review, phylogenetic distribution, structure, transport dynamics, gating mechanism, sub-cellular localization, tissue-specific expression, and co-expression of TIPs are discussed to define their versatile role in plants. Based on the phylogenetic distribution, TIPs are classified into five distinct groups with aromatic-arginine (Ar/R) selectivity filters, typical pore-morphology, and tissue-specific gene expression patterns. The tissue-specific expression of TIPs is conserved among diverse plant species, more particularly for TIP3s, which are expressed exclusively in seeds. Studying TIP3 evolution will help to understand seed development and germination. The solute specificity of TIPs plays an imperative role in physiological processes like stomatal movement and vacuolar sequestration as well as in alleviating environmental stress. TIPs also play an important role in growth and developmental processes like radicle protrusion, anther dehiscence, seed germination, cell elongation, and expansion. The gating mechanism of TIPs regulates the solute flow in response to external signals, which helps to maintain the physiological functions of the cell. The information provided in this review is a base to explore TIP's potential in crop improvement programs.
Asunto(s)
Acuaporinas , Proteínas de Plantas , Acuaporinas/genética , Germinación , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vacuolas/metabolismoRESUMEN
Silicon (Si), a beneficial element for plants, is known for its prophylactic effect under stress conditions. Many studies have documented the role of biogenic silica (bulk-Si) in alleviating biotic and abiotic stresses in plants. The scarce amount of the plant-available form of Si (monosilicic acid) in most of the cultivated soil and the limited efficacy of silicate fertilizers (bulk-Si) are the major concerns for the exploration of Si-derived benefits. In this regard, recent advances in nanotechnology have opened up new avenues for crop improvement, where plants can derive benefits associated with Si nanoparticles (SiNPs). Most of the studies have shown the positive effect of SiNPs on the growth and development of plants specifically under stress conditions. In contrast, a few studies have also reported their toxic effects on some plant species. Hence, there is a pertinent need for elaborative research to explore the utility of SiNPs in agriculture. The present review summarizes SiNP synthesis, application, uptake, and role in stimulating plant growth and development. The advantages of SiNPs over conventional bulk-Si fertilizers in agriculture, their efficacy in different plant species, and safety concerns have also been discussed. The gaps in our understanding of various aspects of SiNPs in relation to plants have also been highlighted, which will guide future research in this area. The increased attention towards SiNP-related research will help to realize the true potential of SiNPs in agriculture.