Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 323: 138189, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36812989

RESUMEN

Antibiotics are now considered as emerging environmental pollutants due to their persistent nature and continuous exposure through irrigation with wastewater contaminated with antibiotics. The aim of present study was to assess the potential of nanoparticles for the photodegradation of antibiotics and subsequent stress alleviation via Titania oxide (TiO2) application for improvement in crop productivity and quality in terms of the nutritional composition. In the first phase, different nanoparticles, TiO2, Zinc oxide (ZnO), and Iron oxide (Fe2O3) with varying concentrations (40-60 mg L-1) and time-periods (1-9 days) were tested to degrade amoxicillin (Amx) and levofloxacin (Lev) @ 5 mg L-1 under the visible light. Results indicated that TiO2 nanoparticles (50 mg L-1) were the most effective nanoparticles for the removal of both antibiotics with maximum degradation of 65% and 56% for Amx and Lev, respectively, on the 7th day. In the second phase, a pot experiment was conducted in which TiO2 (50 mg L-1) was applied individually and along with antibiotics (5 mg L-1) in order to evaluate the effect of nanoparticles on stress alleviation for growth promotion of wheat exposed to antibiotics. Plant biomass was reduced by Amx (58.7%) and Lev (68.4%) significantly (p < 0.05) when compared to the control. However, co-application of TiO2 and antibiotics improved the total iron (34.9% and 42%), carbohydrate (33% and 31%), and protein content (36% and 33%) in grains under Amx and Lev stress, respectively. The highest plant length, grain weight, and nutrient uptake were observed upon application of TiO2 nanoparticles alone. Total iron, carbohydrates, and proteins in grains were significantly increased by 52%, 38.5%, and 40%, respectively compared to the control (with antibiotics). The findings highlight the potential of TiO2 nanoparticles for stress alleviation, growth, and nutritional improvement under antibiotic stress upon irrigation with contaminated wastewater.


Asunto(s)
Agricultura , Amoxicilina , Levofloxacino , Nanopartículas del Metal , Contaminantes Químicos del Agua , Purificación del Agua , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Agricultura/métodos , Pakistán , Triticum/efectos de los fármacos , Antibacterianos/química , Contaminantes Químicos del Agua/química , Luz Solar , Óxido de Zinc/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Nanopartículas Magnéticas de Óxido de Hierro/ultraestructura , Amoxicilina/química , Levofloxacino/química , Purificación del Agua/métodos
2.
Polymers (Basel) ; 15(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36616375

RESUMEN

The current energy crisis and waste management problems have compelled people to find alternatives to conventional non-renewable fuels and utilize waste to recover energy. Pyrolysis of plastics, which make up a considerable portion of municipal and industrial waste, has emerged as a feasible resolution to both satisfy our energy needs and mitigate the issue of plastic waste. This study was therefore conducted to find a solution for plastic waste management problems, as well as to find an alternative to mitigate the current energy crisis. Pyrolysis of five of the most commonly used plastics, polyethylene terephthalate (PET), high- and low-density polyethylene (HDPE, LDPE), polypropylene (PP), and polystyrene (PS), was executed in a pyrolytic reactor designed utilizing a cylindrical shaped stainless steel container with pressure and temperature gauges and a condenser to cool down the hydrocarbons produced. The liquid products collected were highly flammable and their chemical properties revealed them as fuel alternatives. Among them, the highest yield of fuel conversion (82%) was observed for HDPE followed by PP, PS, LDPE, PS, and PET (61.8%, 58.0%, 50.0%, and 11.0%, respectively). The calorific values of the products, 46.2, 46.2, 45.9, 42.8 and 42.4 MJ/kg for LPDE, PP, HPDE, PS, and PET, respectively, were comparable to those of diesel and gasoline. Spectroscopic and chromatographic analysis proved the presence of alkanes and alkenes with carbon number ranges of C9-C15, C9-C24, C10-C21, C10-C28, and C9-C17 for PP, PET, HDPE, LDPE, and PS, respectively. If implemented, the study will prove to be beneficial and contribute to mitigating the major energy and environmental issues of developing countries, as well as enhance entrepreneurship opportunities by replicating the process at small-scale and industrial levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA