Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Soft Matter ; 20(25): 4950-4963, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38873747

RESUMEN

Red blood cells (RBC), the primary carriers of oxygen in the body, play a crucial role across several biomedical applications, while also being an essential model system of a deformable object in the microfluidics and soft matter fields. However, RBC behavior in viscoelastic liquids, which holds promise in enhancing microfluidic diagnostic applications, remains poorly studied. We here show that using viscoelastic polymer solutions as a suspending carrier causes changes in the clustering and shape of flowing RBC in microfluidic flows when compared to a standard Newtonian suspending liquid. Additionally, when the local RBC concentration increases to a point where hydrodynamic interactions take place, we observe the formation of equally-spaced RBC structures, resembling the viscoelasticity-driven ordered particles observed previously in the literature, thus providing the first experimental evidence of viscoelasticity-driven cell ordering. The observed RBC ordering, unaffected by polymer molecular architecture, persists as long as the surrounding medium exhibits shear-thinning, viscoelastic properties. Complementary numerical simulations reveal that viscoelasticity-induced repulsion between RBCs leads to equidistant structures, with shear-thinning modulating this effect. Our results open the way for the development of new biomedical technologies based on the use of viscoelastic liquids while also clarifying fundamental aspects related to multibody hydrodynamic interactions in viscoelastic microfluidic flows.


Asunto(s)
Elasticidad , Eritrocitos , Eritrocitos/citología , Viscosidad , Humanos , Hidrodinámica , Microfluídica
2.
Soft Matter ; 19(33): 6255-6266, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37522517

RESUMEN

Bifurcations and branches in the microcirculation dramatically affect blood flow as they determine the spatiotemporal organization of red blood cells (RBCs). Such changes in vessel geometries can further influence the formation of a cell-free layer (CFL) close to the vessel walls. Biophysical cell properties, such as their deformability, which is impaired in various diseases, are often thought to impact blood flow and affect the distribution of flowing RBCs. This study investigates the flow behavior of healthy and artificially hardened RBCs in a bifurcating microfluidic T-junction. We determine the RBC distribution across the channel width at multiple positions before and after the bifurcation. Thus, we reveal distinct focusing profiles in the feeding mother channel for rigid and healthy RBCs that dramatically impact the cell organization in the successive daughter channels. Moreover, we experimentally show how the characteristic asymmetric CFLs in the daughter vessels develop along their flow direction. Complimentary numerical simulations indicate that the buildup of the CFL is faster for healthy than for rigid RBCs. Our results provide fundamental knowledge to understand the partitioning of rigid RBC as a model of cells with pathologically impaired deformability in complex in vitro networks.


Asunto(s)
Eritrocitos , Microfluídica , Eritrocitos/fisiología , Microcirculación/fisiología , Deformación Eritrocítica
3.
Biophys J ; 122(8): 1526-1537, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36932676

RESUMEN

The distribution of red blood cells (RBCs) in the microcirculation determines the oxygen delivery and solute transport to tissues. This process relies on the partitioning of RBCs at successive bifurcations throughout the microvascular network, and it has been known since the last century that RBCs partition disproportionately to the fractional blood flow rate, therefore leading to heterogeneity of the hematocrit (i.e., volume fraction of RBCs in blood) in microvessels. Usually, downstream of a microvascular bifurcation, the vessel branch with a higher fraction of blood flow receives an even higher fraction of RBC flux. However, both temporal and time-average deviations from this phase-separation law have been observed in recent studies. Here, we quantify how the microscopic behavior of RBC lingering (i.e., RBCs temporarily residing near the bifurcation apex with diminished velocity) influences their partitioning, through combined in vivo experiments and in silico simulations. We developed an approach to quantify the cell lingering at highly confined capillary-level bifurcations and demonstrate that it correlates with deviations of the phase-separation process from established empirical predictions by Pries et al. Furthermore, we shed light on how the bifurcation geometry and cell membrane rigidity can affect the lingering behavior of RBCs; e.g., rigid cells tend to linger less than softer ones. Taken together, RBC lingering is an important mechanism that should be considered when studying how abnormal RBC rigidity in diseases such as malaria and sickle-cell disease could hinder the microcirculatory blood flow or how the vascular networks are altered under pathological conditions (e.g., thrombosis, tumors, aneurysm).


Asunto(s)
Eritrocitos , Modelos Cardiovasculares , Hematócrito , Microcirculación/fisiología , Velocidad del Flujo Sanguíneo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA