Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273084

RESUMEN

Massage therapy increases muscle blood flow and heat, relieving pain, improving immune function, and increasing vagal activity. The mechanisms are unclear. Muscles release cytokines and other peptides called myokines. These myokines exert their effects on different tissues and organs in para-, auto-, and endocrine fashion. The aim of this intervention study was to investigate if massage therapy affects circulating myokine levels. A total of 46 healthy, normal-weight subjects (15 men) aged 18-35 were recruited. Forty-five minutes of massage Swedish therapy was applied to the back and hamstrings. Blood samples via cannula were taken at the baseline, during the massage (30 min), end of the massage (45 min), and 30 min and 1 h after the massage. Interleukin 6 (IL-6) and insulin-like growth factor 1 (IGF-1) were measured as surrogate markers by ELISAs. There was a significant increase in IL-6 from 1.09 pg/mL to 1.85 pg/mL over time (Wilks' Lambda Value 0.545, p < 0.000; repeated measures ANOVA). Pair-wise comparisons showed a significant increase after 1 h of massage. No significant increase was observed in IGF-1 levels. The change in myokine levels was not correlated with muscle mass (p = 0.16, 0.74). The increase in IL-6 suggests that there might be anti-inflammatory effects, affecting glucose and lipid metabolism pathways via IL-6 signaling to muscles, fat tissue, and the liver.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Interleucina-6 , Masaje , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masaje/métodos , Masculino , Interleucina-6/sangre , Adulto , Femenino , Adulto Joven , Adolescente , Suecia , Músculo Esquelético/metabolismo , Péptidos Similares a la Insulina
2.
J Food Compost Anal ; 133: 106471, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39221176

RESUMEN

To accurately evaluate dietary intake, multiple resources are necessary, including serving-size modules, pictures, and questionnaires that are used to gather information during surveys. One critical component is the accessibility of food composition data at the national or regional level, which is required to determine dietary intake. Food Agriculture Organization/International Network of Food Data Systems (FAO/INFOODs) tools are useful for developing high-quality food composition data. We used these tools to create a nutrient dataset for a nutritional survey in Matiari, Sindh, and to collect dietary information through a 24-hour food recall questionnaire. The survey results indicated 540 distinct types of foods, including 291 ready-to-eat items, 84 foods used as ingredients in recipes, and 164 various composite and mixed recipes. Most food items corresponded to the national and regional Food Composition Tables (FCTs) and the Food and Nutrient Database for Dietary Studies (FNDDS) of the USDA, with the exception of recipe food data. We utilized Eurofir-recipe calculation methods to compute the recipe data. The data were homogenized and standardized utilizing EFSA and Langual™. Because of the obsolescence and inadequacy of Pakistan's food composition table in assessing essential nutrients, we had to source data from various other sources. Consequently, to establish the nutrient dataset, we incorporated approximately 25 % of user data from national sources, with recipe data comprising 46 % and less than 20 % extracted from regional, U.S database, and diverse online sources. This study is the first effort in which we gathered data from reliable sources representing local eating patterns, with some exceptions. Future studies will hugely benefit from this database, especially as we face a high prevalence of undernutrition in our part of the world.

3.
Funct Integr Genomics ; 24(5): 153, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39223394

RESUMEN

Soybean Glycine max L., paleopolyploid genome, poses challenges to its genetic improvement. However, the development of reference genome assemblies and genome sequencing has completely changed the field of soybean genomics, allowing for more accurate and successful breeding techniques as well as research. During the single-cell revolution, one of the most advanced sequencing tools for examining the transcriptome landscape is single-cell RNA sequencing (scRNA-seq). Comprehensive resources for genetic improvement of soybeans may be found in the SoyBase and other genomics databases. CRISPR-Cas9 genome editing technology provides promising prospects for precise genetic modifications in soybean. This method has enhanced several soybean traits, including as yield, nutritional value, and resistance to both biotic and abiotic stresses. With base editing techniques that allow for precise DNA modifications, the use of CRISPR-Cas9 is further increased. With the availability of the reference genome for soybeans and the following assembly of wild and cultivated soybeans, significant chromosomal rearrangements and gene duplication events have been identified, offering new perspectives on the complex genomic structure of soybeans. Furthermore, major single nucleotide polymorphisms (SNPs) linked to stachyose and sucrose content have been found through genome-wide association studies (GWAS), providing important tools for enhancing soybean carbohydrate profiles. In order to open up new avenues for soybean genetic improvement, future research approaches include investigating transcriptional divergence processes, enhancing genetic resources, and incorporating CRISPR-Cas9 technologies.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , Glycine max , Glycine max/genética , Edición Génica/métodos , Genómica/métodos , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo
4.
Pflugers Arch ; 476(10): 1613-1621, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39075239

RESUMEN

Glucagon-like peptide (GLP)-1 is a hormone released by enteroendocrine L-cells after food ingestion. L-cells express various receptors for nutrient sensing including G protein-coupled receptors (GPRs). Intestinal epithelial cells near the lumen have a lower O2 tension than at the base of the crypts, which leads to hypoxia in L-cells. We hypothesized that hypoxia affects nutrient-stimulated GLP-1 secretion from the enteroendocrine cell line STC-1, the most commonly used model. In this study, we investigated the effect of hypoxia (1% O2) on alpha-linolenic acid (αLA) stimulated GLP-1 secretion and their receptor expressions. STC-1 cells were incubated for 12 h under hypoxia (1% O2) and treated with αLA to stimulate GLP-1 secretion. 12 h of hypoxia did not change basal GLP-1 secretion, but significantly reduced nutrient (αLA) stimulated GLP-1 secretion. In normoxia, αLA (12.5 µM) significantly stimulated (~ 5 times) GLP-1 secretion compared to control, but under hypoxia, GLP-1 secretion was reduced by 45% compared to normoxia. αLA upregulated GPR120, also termed free fatty acid receptor 4 (FFAR4), expressions under normoxia as well as hypoxia. Hypoxia downregulated GPR120 and GPR40 expression by 50% and 60%, respectively, compared to normoxia. These findings demonstrate that hypoxia does not affect the basal GLP-1 secretion but decreases nutrient-stimulated GLP-1 secretion. The decrease in nutrient-stimulated GLP-1 secretion was due to decreased GPR120 and GPR40 receptors expression. Changes in the gut environment and inflammation might contribute to the hypoxia of the epithelial and L-cells.


Asunto(s)
Hipoxia de la Célula , Células Enteroendocrinas , Péptido 1 Similar al Glucagón , Receptores Acoplados a Proteínas G , Péptido 1 Similar al Glucagón/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Enteroendocrinas/metabolismo , Animales , Hipoxia de la Célula/fisiología , Línea Celular , Ratones , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/metabolismo
5.
Front Nutr ; 11: 1371672, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899322

RESUMEN

Pollen grains are the male reproductive part of the flowering plants. It is collected by forager honey bees and mixed with their salivary secretions, enzymes, and nectar, which form fermented pollen or "bee bread" which is stored in cells of wax honeycombs. Bee pollen (BP) is a valuable apitherapeutic product and is considered a nutritional healthy food appreciated by natural medicine from ancient times. Recently, BP has been considered a beneficial food supplement and a value-added product that contains approximately 250 different bioactive components. It contains numerous beneficial elements such as Mg, Ca, Mn, K, and phenolic compounds. BP possesses strong antioxidant, anti-inflammatory, antimicrobial, antiviral, analgesic, immunostimulant, neuroprotective, anti-cancer, and hepatoprotective properties. It is used for different purposes for the welfare of mankind. Additionally, there is a growing interest in honey bee products harvesting and utilizing for many purposes as a natural remedy and nutritive function. In this review, the impacts of BP on different organisms in different ways by highlighting its apitherapeutic efficacy are described.

6.
Funct Plant Biol ; 512024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38669462

RESUMEN

Soybean (Glycine max ) is an important oilseed, protein and biodiesel crop. It faces significant threats from bacterial, fungal and viral pathogens, which cause economic losses and jeopardises global food security. In this article, we explore the relationship between soybeans and these pathogens, focusing on the molecular responses that are crucial for soybeans defence mechanisms. Molecular responses involve small RNAs and specific genes, including resistance (R) genes that are pivotal in triggering immune responses. Functional genomics, which makes use of cutting-edge technologies, such as CRISPR Cas9 gene editing, allows us to identify genes that provide insights into the defence mechanisms of soybeans with the focus on using genomics to understand the mechanisms involved in host pathogen interactions and ultimately improve the resilience of soybeans. Genes like GmKR3 and GmVQ58 have demonstrated resistance against soybean mosaic virus and common cutworm, respectively. Genetic studies have identified quantitative trait loci (QTLs) including those linked with soybean cyst nematode, root-knot nematode and Phytophthora root and stem rot resistance. Additionally, resistance against Asian soybean rust and soybean cyst nematode involves specific genes and their variations in terms of different copy numbers. To address the challenges posed by evolving pathogens and meet the demands of a growing population, accelerated soybean breeding efforts leveraging functional genomics are imperative. Targeted breeding strategies based on a deeper understanding of soybean gene function and regulation will enhance disease resistance, ensuring sustainable agriculture and global food security. Collaborative research and continued technological advancements are crucial for securing a resilient and productive agricultural future.


Asunto(s)
Resistencia a la Enfermedad , Glycine max , Enfermedades de las Plantas , Glycine max/genética , Glycine max/microbiología , Glycine max/inmunología , Glycine max/virología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Agricultura , Genómica , Genes de Plantas , Genoma de Planta , Sitios de Carácter Cuantitativo
7.
J Exp Bot ; 75(10): 3040-3053, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38310636

RESUMEN

Sugarcane (Saccharum spp.), a leading sugar and energy crop, is seriously impacted by drought stress. However, the molecular mechanisms underlying sugarcane drought resistance, especially the functions of epigenetic regulators, remain elusive. Here, we show that a S. spontaneum KDM4/JHDM3 group JmjC protein, SsJMJ4, negatively regulates drought-stress responses through its H3K27me3 demethylase activity. Ectopic overexpression of SsJMJ4 in Arabidopsis reduced drought resistance possibly by promoting expression of AtWRKY54 and AtWRKY70, encoding two negative regulators of drought stress. SsJMJ4 directly bound to AtWRKY54 and AtWRKY70, and reduced H3K27me3 levels at these loci to ensure their proper transcription under normal conditions. Drought stress down-regulated both transcription and protein abundance of SsJMJ4, which was correlated with the reduced occupancy of SsJMJ4 at AtWRKY54 and AtWRKY70 chromatin, increased H3K27me3 levels at these loci, as well as reduced transcription levels of these genes. In S. spontaneum, drought stress-repressed transcription of SsWRKY122, an ortholog of AtWRKY54 and AtWRKY70, was associated with increased H3K27me3 levels at these loci. Transient overexpression of SsJMJ4 in S. spontaneum protoplasts raised transcription of SsWRKY122, paralleled with reduced H3K27me3 levels at its loci. These results suggest that the SsJMJ4-mediated dynamic deposition of H3K27me3 is required for an appropriate response to drought stress.


Asunto(s)
Sequías , Proteínas de Plantas , Saccharum , Saccharum/genética , Saccharum/fisiología , Saccharum/metabolismo , Saccharum/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/fisiología , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Histonas/metabolismo , Histonas/genética
8.
Pflugers Arch ; 476(9): 1339-1351, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38396259

RESUMEN

Transmembrane prolyl 4-hydroxylase (P4H-TM) is an enigmatic enzyme whose cellular function and primary substrate remain to be identified. Its loss-of-function mutations cause a severe neurological HIDEA syndrome with hypotonia, intellectual disability, dysautonomia and hypoventilation. Previously, P4H-TM deficiency in mice was associated with reduced atherogenesis and lower serum triglyceride levels. Here, we characterized the glucose and lipid metabolism of P4h-tm-/- mice in physiological and tissue analyses. P4h-tm-/- mice showed variations in 24-h oscillations of energy expenditure, VO2 and VCO2 and locomotor activity compared to wild-type (WT) mice. Their rearing activity was reduced, and they showed significant muscle weakness and compromised coordination. Sedated P4h-tm-/- mice had better glucose tolerance, lower fasting insulin levels, higher fasting lactate levels and lower fasting free fatty acid levels compared to WT. These alterations were not present in conscious P4h-tm-/- mice. Fasted P4h-tm-/- mice presented with faster hepatic glycogenolysis. The respiratory rate of conscious P4h-tm-/- mice was significantly lower compared to the WT, the decrease being further exacerbated by sedation and associated with acidosis and a reduced ventilatory response to both hypoxia and hypercapnia. P4H-TM deficiency in mice is associated with alterations in whole-body energy metabolism, day-night rhythm of activity, glucose homeostasis and neuromuscular and respiratory functions. Although the underlying mechanism(s) are not yet fully understood, the phenotype appears to have neurological origins, controlled by brain and central nervous system circuits. The phenotype of P4h-tm-/- mice recapitulates some of the symptoms of HIDEA patients, making this mouse model a valuable tool to study and develop tailored therapies.


Asunto(s)
Metabolismo Energético , Animales , Ratones , Ratones Endogámicos C57BL , Masculino , Metabolismo de los Lípidos , Prolil Hidroxilasas/metabolismo , Glucosa/metabolismo , Ratones Noqueados , Hígado/metabolismo
9.
Mol Nutr Food Res ; 68(5): e2300465, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38389173

RESUMEN

SCOPE: Diet and exercise are significant players in obesity and metabolic diseases. Time-restricted feeding (tRF) has been shown to improve metabolic responses by regulating circadian clocks but whether it acts synergically with exercise remains unknown. It is hypothesized that forced exercise alone or combined with tRF alleviates obesity and its metabolic complications. METHODS AND RESULTS: Male C57bl6 mice are fed with high-fat or a control diet for 12 weeks either ad libitum or tRF for 10 h during their active period. High-fat diet (HFD)-fed mice are divided into exercise (treadmill for 1 h at 12 m min-1 alternate days for 9 weeks and 16 m min-1 daily for the following 3 weeks) and non-exercise groups. tRF and tRF-Ex significantly decreased body weight, food intake, and plasma lipids, and improved glucose tolerance. However, exercise reduced only body weight and plasma lipids. tRF and tRF-Ex significantly downregulated Fasn, Hmgcr, and Srebp1c, while exercise only Hmgcr. HFD feeding disrupted clock genes, but exercise, tRF, and tRF-Ex coordinated the circadian clock genes Bmal1, Per2, and Rev-Erbα in the liver, adipose tissue, and skeletal muscles. CONCLUSION: HFD feeding disrupted clock genes in the peripheral organs while exercise, tRF, and their combination restored clock genes and improved metabolic consequences induced by high-fat diet feeding.


Asunto(s)
Relojes Circadianos , Dieta Alta en Grasa , Animales , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Peso Corporal , Ritmo Circadiano/fisiología , Ejercicio Físico , Lípidos
10.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256160

RESUMEN

Obesity is a risk factor for cardiometabolic diseases. Nutrients stimulate GLP-1 release; however, GLP-1 has a short half-life (<2 min), and only <10-15% reaches the systemic circulation. Human L-cells are localized in the distal ileum and colon, while most nutrients are absorbed in the proximal intestine. We hypothesized that combinations of amino acids and fatty acids potentiate GLP-1 release via different L-cell receptors. GLP-1 secretion was studied in the mouse enteroendocrine STC-1 cells. Cells were pre-incubated with buffer for 1 h and treated with nutrients: alpha-linolenic acid (αLA), phenylalanine (Phe), tryptophan (Trp), and their combinations αLA+Phe and αLA+Trp with dipeptidyl peptidase-4 (DPP4) inhibitor. After 1 h GLP-1 in supernatants was measured and cell lysates taken for qPCR. αLA (12.5 µM) significantly stimulated GLP-1 secretion compared with the control. Phe (6.25-25 mM) and Trp (2.5-10 mM) showed a clear dose response for GLP-1 secretion. The combination of αLA (6.25 µM) and either Phe (12.5 mM) or Trp (5 mM) significantly increased GLP-1 secretion compared with αLA, Phe, or Trp individually. The combination of αLA and Trp upregulated GPR120 expression and potentiated GLP-1 secretion. These nutrient combinations could be used in sustained-delivery formulations to the colon to prolong GLP-1 release for diminishing appetite and preventing obesity.


Asunto(s)
Aminoácidos , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Animales , Ratones , Células L , Triptófano , Antivirales , Péptido 1 Similar al Glucagón/farmacología , Hipoglucemiantes , Nutrientes , Obesidad
11.
Plant J ; 117(2): 573-589, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897092

RESUMEN

The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.


Asunto(s)
Cromatina , Saccharum , Succinatos , Saccharum/genética , Saccharum/metabolismo , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Fitomejoramiento , Genómica , Poliploidía
12.
Front Plant Sci ; 14: 1230559, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078080

RESUMEN

Yellow mosaic disease (YMD) is one of the major devastating constraints to soybean production in Pakistan. In the present study, we report the identification of resistant soybean germplasm and a novel mutation linked with disease susceptibility. Diverse soybean germplasm were screened to identify YMD-resistant lines under natural field conditions during 2016-2020. The severity of YMD was recorded based on symptoms and was grouped according to the disease rating scale, which ranges from 0 to 5, and named as highly resistant (HR), moderately resistant (MR), resistant (R), susceptible (S), moderately susceptible (MS), and highly susceptible (HS), respectively. A HR plant named "NBG-SG Soybean" was identified, which showed stable resistance for 5 years (2016-2020) at the experimental field of the National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan, a location that is a hot spot area for virus infection. HS soybean germplasm were also identified as NBG-47 (PI628963), NBG-117 (PI548655), SPS-C1 (PI553045), SPS-C9 (PI639187), and cv. NARC-2021. The YMD adversely affected the yield and a significant difference was found in the potential yield of NBG-SG-soybean (3.46 ± 0.13a t/ha) with HS soybean germplasm NARC-2021 (0.44 ± 0.01c t/ha) and NBG-117 (1.12 ± 0.01d t/ha), respectively. The YMD incidence was also measured each year (2016-2020) and data showed a significant difference in the percent disease incidence in the year 2016 and 2018 and a decrease after 2019 when resistant lines were planted. The resistance in NBG-SG soybean was further confirmed by testing for an already known mutation (SNP at 149th position) for YMD in the Glyma.18G025100 gene of soybean. The susceptible soybean germplasm in the field was found positive for the said mutation. Moreover, an ortholog of the CYR-1 viral resistance gene from black gram was identified in soybean as Glyma.13G194500, which has a novel deletion (28bp/90bp) in the 5`UTR of susceptible germplasm. The characterized soybean lines from this study will assist in starting soybean breeding programs for YMD resistance. This is the first study regarding screening and molecular analysis of soybean germplasm for YMD resistance.

13.
BMC Genomics ; 24(1): 726, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041011

RESUMEN

BACKGROUND: Pre-exposing plants to abiotic stresses can induce stress memory, which is crucial for adapting to subsequent stress exposure. Although numerous genes involved in salt stress response have been identified, the understanding of memory responses to salt stress remains limited. RESULTS: In this study, we conducted physiological and transcriptional assays on maize plants subjected to recurrent salt stress to characterize salt stress memory. During the second exposure to salt stress, the plants exhibited enhanced salt resistance, as evidenced by increased proline content and higher POD and SOD activity, along with decreased MDA content, indicative of physiological memory behavior. Transcriptional analysis revealed fewer differentially expressed genes and variations in response processes during the second exposure compared to the first, indicative of transcriptional memory behavior. A total of 2,213 salt stress memory genes (SMGs) were identified and categorized into four response patterns. The most prominent group of SMGs consisted of genes with elevated expression during the first exposure to salt stress but reduced expression after recurrent exposure to salt stress, or vice versa ([+ / -] or [- / +]), indicating that a revised response is a crucial process in plant stress memory. Furthermore, nine transcription factors (TFs) (WRKY40, WRKY46, WRKY53, WRKY18, WRKY33, WRKY70, MYB15, KNAT7, and WRKY54) were identified as crucial factors related to salt stress memory. These TFs regulate over 53% of SMGs, underscoring their potential significance in salt stress memory. CONCLUSIONS: Our study demonstrates that maize can develop salt stress memory, and the genes identified here will aid in the genetic improvement of maize and other crops.


Asunto(s)
Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
14.
Mol Biotechnol ; 2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37573566

RESUMEN

Plant transformation based on Agrobacterium-mediated transformation is a technique that mimics the natural agrobacterium system for gene(s) introduction into crops. Through this technique, various crop species have been improved/modified for different trait/s, showing a successful genetic transformation so far. This technique has many advantages over other transformation methods such as stable integration of transgene, cost effective. However, there are many limitations of this technology such as mostly the crops are recalcitrant to agrobacterium, low transformation efficiency, transgene integration as well as off targets. So, it's very important to explore the major limitations and possible solutions for Agrobacterium-mediated transformation in order to increase its genetic transformation efficiency. Therefore, the present review article gives a comprehensive study how the transgenic crops are developed using Agrobacterium-mediated transformation, crops that have already been modified through this method, and risks associated with transgenic plants based on Agrobacterium-mediated transformation. Moreover, the challenges and problems associated with Agrobacterium-mediated transformation and how those problems can be solved in future for a successful genetic transformation of crops using modern biotechnology techniques such as CRISPR/Cas9 systems. The present review article will be really helpful for the audience those working on Genome editing of crops using Agrobacterium-mediated transformation and will opens many ways for future plant genetic transformation.

15.
Front Plant Sci ; 14: 1229495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37636105

RESUMEN

Soybean (Glycine max [L.] Merr.) is one of the most significant crops in the world in terms of oil and protein. Owing to the rising demand for soybean products, there is an increasing need for improved varieties for more productive farming. However, complex correlation patterns among quantitative traits along with genetic interactions pose a challenge for soybean breeding. Association studies play an important role in the identification of accession with useful alleles by locating genomic sites associated with the phenotype in germplasm collections. In the present study, a genome-wide association study was carried out for seven agronomic and yield-related traits. A field experiment was conducted in 2015/2016 at two locations that include 155 diverse soybean germplasm. These germplasms were genotyped using SoySNP50K Illumina Infinium Bead-Chip. A total of 51 markers were identified for node number, plant height, pods per plant, seeds per plant, seed weight per plant, hundred-grain weight, and total yield using a multi-locus linear mixed model (MLMM) in FarmCPU. Among these significant SNPs, 18 were putative novel QTNs, while 33 co-localized with previously reported QTLs. A total of 2,356 genes were found in 250 kb upstream and downstream of significant SNPs, of which 17 genes were functional and the rest were hypothetical proteins. These 17 candidate genes were located in the region of 14 QTNs, of which ss715580365, ss715608427, ss715632502, and ss715620131 are novel QTNs for PH, PPP, SDPP, and TY respectively. Four candidate genes, Glyma.01g199200, Glyma.10g065700, Glyma.18g297900, and Glyma.14g009900, were identified in the vicinity of these novel QTNs, which encode lsd one like 1, Ergosterol biosynthesis ERG4/ERG24 family, HEAT repeat-containing protein, and RbcX2, respectively. Although further experimental validation of these candidate genes is required, several appear to be involved in growth and developmental processes related to the respective agronomic traits when compared with their homologs in Arabidopsis thaliana. This study supports the usefulness of association studies and provides valuable data for functional markers and investigating candidate genes within a diverse germplasm collection in future breeding programs.

17.
Funct Integr Genomics ; 23(3): 217, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392308

RESUMEN

Insect pests pose a major threat to agricultural production, resulting in significant economic losses for countries. A high infestation of insects in any given area can severely reduce crop yield and quality. This review examines the existing resources for managing insect pests and highlights alternative eco-friendly techniques to enhance insect pest resistance in legumes. Recently, the application of plant secondary metabolites has gained popularity in controlling insect attacks. Plant secondary metabolites encompass a wide range of compounds such as alkaloids, flavonoids, and terpenoids, which are often synthesized through intricate biosynthetic pathways. Classical methods of metabolic engineering involve manipulating key enzymes and regulatory genes to enhance or redirect the production of secondary metabolites in plants. Additionally, the role of genetic approaches, such as quantitative trait loci mapping, genome-wide association (GWAS) mapping, and metabolome-based GWAS in insect pest management is discussed, also, the role of precision breeding, such as genome editing technologies and RNA interference for identifying pest resistance and manipulating the genome to develop insect-resistant cultivars are explored, highlighting the positive contribution of plant secondary metabolites engineering-based resistance against insect pests. It is suggested that by understanding the genes responsible for beneficial metabolite compositions, future research might hold immense potential to shed more light on the molecular regulation of secondary metabolite biosynthesis, leading to advancements in insect-resistant traits in crop plants. In the future, the utilization of metabolic engineering and biotechnological methods may serve as an alternative means of producing biologically active, economically valuable, and medically significant compounds found in plant secondary metabolites, thereby addressing the challenge of limited availability.


Asunto(s)
Fabaceae , Animales , Fabaceae/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Agricultura , Insectos/genética
18.
Genes (Basel) ; 14(6)2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37372434

RESUMEN

The J-protein family comprises molecular chaperones involved in plant growth, development, and stress responses. Little is known about this gene family in soybean. Hence, we characterized J-protein genes in soybean, with the most highly expressed and responsive during flower and seed development. We also revealed their phylogeny, structure, motif analysis, chromosome location, and expression. Based on their evolutionary links, we divided the 111 potential soybean J-proteins into 12 main clades (I-XII). Gene-structure estimation revealed that each clade had an exon-intron structure resembling or comparable to others. Most soybean J-protein genes lacked introns in Clades I, III, and XII. Moreover, transcriptome data obtained from a publicly accessible soybean database and RT-qPCR were used to examine the differential expression of DnaJ genes in various soybean tissues and organs. The expression level of DnaJ genes indicated that, among 14 tissues, at least one tissue expressed the 91 soybean genes. The findings suggest that J-protein genes could be involved in the soybean growth period and offer a baseline for further functional research into J-proteins' role in soybean. One important application is the identification of J-proteins that are highly expressed and responsive during flower and seed development in soybean. These genes likely play crucial roles in these processes, and their identification can contribute to breeding programs to improve soybean yield and quality.


Asunto(s)
Glycine max , Proteínas del Choque Térmico HSP40 , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Plantas/metabolismo , Fitomejoramiento , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Crecimiento y Desarrollo
19.
PLoS One ; 18(5): e0286099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256876

RESUMEN

Soybean (Glycine max) is an important legume that is used to fulfill the need of protein and oil of large number of population across the world. There are large numbers of soybean germplasm present in the USDA germplasm resources. Finding and understanding genetically diverse germplasm is a top priority for crop improvement programs. The current study used 20 functional EST-SSR and 80 SSR markers to characterize 96 soybean accessions from diverse geographic backgrounds. Ninety-six of the 100 markers were polymorphic, with 262 alleles (average 2.79 per locus). The molecular markers had an average polymorphic information content (PIC) value of 0.44, with 28 markers ≥ 0.50. The average major allele frequency was 0.57. The observed heterozygosity of the population ranged from 0-0.184 (average 0.02), while the expected heterozygosity ranged from 0.20-0.73 (average 0.51). The lower value for observed heterozygosity than expected heterozygosity suggests the likelihood of a population structure among the germplasm. The phylogenetic analysis and principal coordinate analysis (PCoA) divided the total population into two major groups (G1 and G2), with G1 comprising most of the USA lines and the Australian and Brazilian lines. Furthermore, the phylogenetic analysis and PCoA divided the USA lines into three major clusters without any specific differentiation, supported by the model-based STRUCTURE analysis. Analysis of molecular variance (AMOVA) showed 94% variation among individuals in the total population, with 2% among the populations. For the USA lines, 93% of the variation occurred among individuals, with only 2% among lines from different US states. Pairwise population distance indicated more similarity between the lines from continental America and Australia (189.371) than Asia (199.518). Overall, the 96 soybean lines had a high degree of genetic diversity.


Asunto(s)
Variación Genética , Glycine max , Humanos , Glycine max/genética , Filogenia , Repeticiones de Microsatélite/genética , Australia
20.
J Nutr ; 153(2): 459-469, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36894239

RESUMEN

BACKGROUND: Low-carbohydrate high-fat (LCHF) diets may suppress the increase in appetite otherwise seen after diet-induced fat loss. However, studies of diets without severe energy restriction are lacking, and the effects of carbohydrate quality relative to quantity have not been directly compared. OBJECTIVES: To evaluated short- (3 mo) and long-term (12 mo) changes in fasting plasma concentrations of total ghrelin, ß-hydroxybutyrate (ßHB), and subjective feelings of appetite on 3 isocaloric eating patterns within a moderate caloric range (2000-2500 kcal/d) and with varying carbohydrate quality or quantity. METHODS: We performed a randomized controlled trial of 193 adults with obesity, comparing eating patterns based on "acellular" carbohydrate sources (e.g., flour-based whole-grain products; comparator arm), "cellular" carbohydrate sources (minimally processed foods with intact cellular structures), or LCHF principles. Outcomes were compared by an intention-to-treat analysis using constrained linear mixed modeling. This trial was registered at clinicaltrials.gov as NCT03401970. RESULTS: Of the 193 adults, 118 (61%) and 57 (30%) completed 3 and 12 mo of follow-up. Throughout the intervention, intakes of protein and energy were similar with all 3 eating patterns, with comparable reductions in body weight (5%-7%) and visceral fat volume (12%-17%) after 12 mo. After 3 mo, ghrelin increased significantly with the acellular (mean: 46 pg/mL; 95% CI: 11, 81) and cellular (mean: 54 pg/mL; 95% CI: 21, 88) diets but not with the LCHF diet (mean: 11 pg/mL; 95% CI: -16, 38). Although ßHB increased significantly more with the LCHF diet than with the acellular diet after 3 m (mean: 0.16 mmol/L; 95% CI: 0.09, 0.24), this did not correspond to a significant group difference in ghrelin (unless the 2 high-carbohydrate groups were combined [mean: -39.6 pg/mL; 95% CI: -76, -3.3]). No significant between-group differences were seen in feelings of hunger. CONCLUSIONS: Modestly energy-restricted isocaloric diets differing in carbohydrate cellularity and amount showed no significant differences in fasting total ghrelin or subjective hunger feelings. An increase in ketones with the LCHF diet to 0.3-0.4 mmol/L was insufficient to substantially curb increases in fasting ghrelin during fat loss.


Asunto(s)
Apetito , Ghrelina , Adulto , Humanos , Cetonas/farmacología , Carbohidratos de la Dieta/farmacología , Ingestión de Energía , Obesidad , Dieta con Restricción de Grasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA